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Abundant Pleiotropy in Human Complex
Diseases and Traits

Shanya Sivakumaran,1,6 Felix Agakov,1,2,6 Evropi Theodoratou,1,6 James G. Prendergast,3 Lina Zgaga,1,4

Teri Manolio,5 Igor Rudan,1 Paul McKeigue,1 James F. Wilson,1 and Harry Campbell1,*

We present a systematic review of pleiotropy among SNPs and genes reported to show genome-wide association with common complex

diseases and traits. We find abundant evidence of pleiotropy; 233 (16.9%) genes and 77 (4.6%) SNPs show pleiotropic effects. SNP pleio-

tropic status was associated with gene location (p ¼ 0.024; pleiotropic SNPs more often exonic [14.5% versus 4.9% for nonpleiotropic,

trait-associated SNPs] and less often intergenic [15.8% versus 23.6%]), ‘‘predicted transcript consequence’’ (p ¼ 0.001; pleiotropic SNPs

more often predicted to be structurally deleterious [5% versus 0.4%] but not more often in regulatory sequences), and certain disease

classes. We develop a method to calculate the likelihood that pleiotropic links between traits occurred more often than expected and

demonstrate that this approach can identify etiological links that are already known (such as between fetal hemoglobin and malaria

risk) and those that are not yet established (e.g., between plasma campesterol levels and gallstones risk; and between immunoglobulin

A and juvenile idiopathic arthritis). Examples of pleiotropy will accumulate over time, but it is already clear that pleiotropy is a common

property of genes and SNPs associated with disease traits, and this will have implications for identification of molecular targets for drug

development, future genetic risk-profiling, and classification of diseases.
Introduction

Pleiotropy occurs when one gene has an effect on multiple

phenotypes. The molecular mechanisms of pleiotropy can

be dichotomized into multiple molecular functions of a

single gene product and multiple consequences of a single

molecular function.1–3 Although pleiotropy in the genetic

architecture of complex disease has been proposed,4 to

date, evidence for its presence has not been systematically

evaluated despite suggestions that this could be useful.5,6

Previous assessments of a shared genetic basis between

multiple phenotypes have been confined to restricted anal-

yses in (1) specific traits, including immune-mediated

diseases;7 seven diseases studied by the Wellcome Trust

Case Control Consortium genome-wide association study

(GWAS)8 including Crohn disease (IBD1 [MIM 266600]);9

blood pressure and selected hematological traits studied

by the Cohorts for Heart and Aging Research in Genomic

Epidemiology consortium;10 and pancreatic cancer [MIM

260350];11 (2) single-trait GWASs;12,13 and (3) a recent phe-

nome-wide scan to discover gene-disease associations.14

The National Human Genome Research Institute’s

(NHGRI) Catalog of Published GWAS15 is a comprehensive

resource listing statistically significant SNP-trait associa-

tions significant at p < 1 3 10�5 from all GWAS publica-

tions that attempt to assay at least 100,000 SNPs. If a study

did not report a combined p value, the p value from the

largest sample size was recorded in the NHGRI catalog if

both discovery and replication samples show an associa-

tion at p< 13 10�5. If a study did not include a replication

stage, significant SNPs from the initial stage were recorded
1Centre for Population Health Sciences, The University of Edinburgh, Edinbu

Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburg

University of Zagreb, 10000 Zagreb, Croatia; 5Office of Population Genomics,
6These authors contributed equally to this work

*Correspondence: harry.campbell@ed.ac.uk

DOI 10.1016/j.ajhg.2011.10.004. �2011 by The American Society of Human

The American
in the catalog. We considered that the stringent criteria

employed for accepting associations in GWASs, including

quality control standards, strict p value thresholds, and

a requirement for replication, yielded robust evidence of

association and so gave a secure basis from which to study

evidence for pleiotropy among genes and common genetic

variants.

In this review, by using the open-access NHGRI catalog,

we aim to gain insight into the extent and pattern of plei-

otropy in the genetics of common, complex disease to

characterize pleiotropic genes and SNPs and to describe

clusters of diseases and disease traits.

Our prior expectations were that pleiotropic genes

would be more common in certain functional groups

and pleiotropic SNPs more often located in an upstream

or regulatory region than nonpleiotropic genes and SNPs.

Furthermore, we anticipated that the network of pheno-

types sharing association to common SNPs or genes might

give clues to underlying common mechanisms, some of

which might be unexpected and suggest hypotheses about

shared molecular pathways.
Material and Methods

Identification of Common Variants Showing

Association with Complex Phenotypes
Common genetic variants reported to be associated with complex

non-Mendelian phenotypes were defined as those contained in

the NHGRI catalog (last accessed February 4, 2011). Only SNP-trait

associations reporting genome-wide significance (p < 5 3 10�8)16

were considered, and the total number that was included in the
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analysis was 1687 SNPs. In addition, we considered linkage

disequilibrium (LD) blocks-trait association by calculating the LD

between all the GWAS hits used in this analysis and collapsing

those SNPs that were in high LD into single loci (threshold for

high LD r2 > 0.80). Gene nomenclature was standardized by use

of the Human Genome Organisation (HUGO) Gene Nomencla-

ture Committee (HGNC) and Ensembl gene Identification

numbers (IDs).17–19 For each SNP-trait association we accepted

the NHGRI catalog record of which gene(s) and SNPs were consid-

ered by the study authors to mediate the association. This allowed

an investigation of pleiotropy at both gene and variant level.

Three additional comprehensive and systematic approaches

(annotation based on LD, annotation based on a mapped gene

feature of the NHGRI catalog and annotation based on taking all

genes in the LD block) were adopted to evaluate to what extent

the gene author-annotation approach might be subject to bias.

In the first approach (denoted here as LD method) a gene was

assigned to a SNP if the gene overlapped with that SNP. Otherwise

the nearest gene in the same LD block was taken. The second

approach (denoted here as NHGRI mapped gene method) em-

ployed this feature of the NHGRI catalog in which genes were

mapped to the SNP (NCBI) showing the most significant associa-

tion. If the SNP was located within a gene, that gene was listed.

If the SNP was intergenic, both the upstream and downstream

genes were listed. When using this method, we (1) restricted the

analysis only to those SNPs that were located in a gene and (2) con-

ducted a locus analysis for those SNPs that were intergenic,

described the extent of pleiotropy for these loci and added the

loci to the genes. The third approach (denoted here as taking all

genes in the LD block annotation method) was based on the prop-

osition that it is possible for any locus or gene within an LD block

to be associated with the reported SNP and consequently to the

phenotype.

Definition of Pleiotropy
We defined pleiotropy as a single gene or variant being associated

with more than one distinct phenotypes (disease endpoints or

quantitative traits) then systematically applied the following

exclusion criteria in order to obtain a conservative estimate of plei-

otropy that was not inflated by highly correlated trait and/or

disease outcomes: (1) the phenotypes were (patho)-physiological

counterparts (e.g., serum uric-acid level and gout), (2) one pheno-

type was a subset of the other (e.g., Crohn disease [MIM 266600]

and inflammatory bowel disease [MIM 266600]), (3) one pheno-

type is used to calculate the other (e.g., low-density lipoprotein

[LDL] cholesterol level and triglyceride levels20), (4) the pheno-

types are similar or strongly correlated such that they might be

measures of the same genetic effect (e.g., bone mineral density

in the spine and hip, serum calcium and phosphorus, serum pros-

tate specific antigen and prostate cancer [MIM 176807], pigmenta-

tion traits), (5) one phenotype is a known causal factor for the

other (e.g., LDL cholesterol level and myocardial infarction

[MIM 608446]).

We categorized genes or variants in the NHGRI catalog as pleio-

tropic or nonpleiotropic after application of the above definition

and criteria. The status in terms of criteria (1–3) was typically

self-evident but in terms of criteria (4) and (5) was occasionally

uncertain. In these circumstances relationships between the

phenotypes associated with the gene or SNP were explored in

the current literature. Categorization then took place by

consensus after discussion between authors (S.S., H.C., J.F.W.).

We estimated the frequency of pleiotropy among the common
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complex phenotypes studied by GWASs by identifying the

number of pleiotropic genes and SNPs and presenting this as

a percentage of the overall number of genes and SNPs reported

in the NHGRI catalog.

Pleiotropic genes were characterized by comparing the length of

pleiotropic genes (in kilobases) to the length of nonpleiotropic

genes with Ensembl. We conducted an analysis of biological

processes that the genes were associated with (by using Gene

Ontology [GO] terms21 via GOrilla22,23) to investigate evidence

for enrichment of biological processes among pleiotropic genes.

We characterized pleiotropic SNPs by their location and conse-

quence for the transcript and compared them to nonpleiotropic

SNPs by using standard Ensembl annotation and definitions.

The categories for SNP location were intergenic, upstream, 50

UTR, exon (comprising nonsynonymous coding, synonymous

coding, frameshift coding, and STOP gained), intron (SNPs labeled

as both intronic and NMDtranscript, intronic and splice site, or

intronic and regulatory region are included here), 30 UTR, down-

stream, and within a noncoding gene (i.e., within a gene that

does not code for a protein). We employed the bioinformatic tools

SIFT24 and PolyPhen25 to decide whether nonsynonymous (ns)

SNPs were deleterious. These tools predict the nsSNPs likely to

affect protein function. We categorized nsSNPs as deleterious if

both SIFT and PolyPhen predicted them to be damaging or prob-

ably damaging.

We dichotomized the parameter consequence for the transcript

into two broad categories: very likely to be structurally functional,

which consisted of a STOP codon lost or gained, frameshift

coding, deleterious nonsynonymous coding, or essential splice

site variation and possibly regulatory, which consisted of SNPs

located upstream in a 50 or 30 UTR, or in an intron or region anno-

tated as regulatory by Ensembl.

In this report we will use the term nonpleiotropic genes or SNPs

to denote the group of genes or SNPs in the NHGRI catalog that we

have not defined as pleiotropic. In our descriptive analysis of

pleiotropic genes and SNPs, we compared pleiotropic genes and

SNPs in the NHGRI catalog to this group rather than to all genes

and SNPs in the genome because we considered that differences

with the latter might be confounded by selection of SNPs for the

genotyping arrays or other genic characteristics that are related

to detection of an association.

We considered, a priori, that certain disease classes would have

higher levels of pleiotropy than others. Figure 1 suggests causes

and implications of suchoverrepresentation. For example, a higher

level of pleiotropy might be found in certain disease classes and in

these circumstances all characteristics of the genes harboring vari-

ants associated with these diseases might appear to be associated

with pleiotropy but this might be because of confounding. In

this case a stratified analysis by disease category might help to

interpret the observed associations with pleiotropy. We expected

that variants and genes harboring variants associated with the

cluster of immune-mediated phenotypes might form a sizeable

proportion of all pleiotropic SNP and genes. We therefore decided

to present overall findings and then findings after all immune-

mediated phenotypes were coded as one single disease. We thus

describe results for immune-mediated pleiotropic (IMP) genes/

SNPs and nonimmune-mediated pleiotropic (NIMP) genes/SNPs.

Phenotypes coded as immune mediated are presented in Table 1.

Additionally, we conducted an analysis to compare the frequency

of pleiotropy in three well-defined disease classes—immune-medi-

ated disease, the metabolic syndrome (phenotypes included are

presented in Table 1), and cancer.
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Disease class A

Gene characteristic 
X, Y, Z

Pleiotropy

Figure 1. Interpretation of High Levels of Pleiotropy in Partic-
ular Disease Classes
If there was a high level of pleiotropy in disease class A, all charac-
teristics of genes associated with disease class A would be associ-
ated with pleiotropy (including, but not specifically, the character-
istic leading to overrepresentation of disease class A in the
pleiotropy category). Therefore, some gene characteristics could
be associated with pleiotropy as a result of confounding.

Table 1. List of Immune-Mediated Diseases and Traits Phenotypes
Included in the Metabolic Syndrome Disease Classa

Immune-Mediated Diseases
and Traits Metabolic Syndrome

alopecia areata adiponectin

ankylosing spondylitis beta-cell function

asthma blood pressure (systolic)

atopic dermatitis blood pressure (diastolic)

Behcet’s disease body mass index

celiac disease cholesterol, HDL

Crohn disease cholesterol, LDL

eosinophilic esophagitis cholesterol, total

inflammatory bowel disease c-reactive protein

JIA fasting insulin

multiple sclerosis fasting plasma glucose

neonatal lupus fibrinogen

primary biliary cirrhosis glycated hemoglobin

primary sclerosing cholangitis hypertension

psoriasis hypertension (early onset)

psoriatic arthritis hypertriglyceridaemia

rheumatoid arthritis insulin resistance

systemic lupus erythematosus interleukin 18

systemic sclerosis lipoprotein a

type 1 diabetes obesity

ulcerative colitis soluble leptin receptor

vitiligo TNFa

cd4:cd8 ratio triglycerides

cd8 lymphocyte two-hour glucose challenge

eosinophil count type 2 diabetes

immunoglobulin A waist circumference

immunoglobulin E waist-hip ratio

neutrophil count weight

serum soluble e-selectin

serum soluble p-selectin

soluble ICAM-1

soluble il-6 receptor

white blood cell count

a Based on International Diabetes Federation.75
Statistical Analysis
TheMann-WhitneyU test was used to test for difference in the size

(in kb) of pleiotropic and nonpleiotropic genes. To test the differ-

ence between pleiotropic and nonpleiotropic genes in terms of

enrichment of biological processes using GOrilla, we calculated

exact p values by using a hypergeometric model. The threshold

a of significance was set to 9.7 3 10�6 after application of the

Bonferroni correction for testing 5160 terms. To determine

whether there was a statistically significant association between

pleiotropic status and the location of the SNP or the consequence

for the transcript, we calculated exact p values by using Fisher’s

exact test.

Probability of Gene Overlaps

We estimated whether the number of observed genetic overlaps

between apparently nonrelated diseases or traits is statistically

significantly different from that expected by chance. We have

used two different methods.

The Independent Model. For each pair of diseases and/or traits A

and B, we estimated the probability of having the observed

number of overlaps. The chance that exactly i genes harboring

variants associated with both traits is based on the probability of

drawing i (shared) genes for trait A and the probability of drawing

i (shared) genes for trait B. These probabilities are computed as the

number of genes harboring variants associated with each trait

(na and nb) divided by the total number n of the considered genes.

nwas equal to either (1) the number of genes in the NHGRI catalog

(n ¼ 1380) or (2) the overall number of genes (estimated as

n ¼ 20,000). See Supplemental Methods, available online, for an

example illustration.

This approach is shown to illustrate the potential for mistakenly

identifying correlations as statistically significant (because some

publications have reported such correlations in specific disease

areas). It employs the simplistic assumptions that (1) the genes

act independently, (2) each gene has an equal chance of being

associated with a trait, and (3) traits in the pair are unrelated.

The approach does not compare the considered phenotype pair

with other pairs. More importantly, it focuses only on the overlap-

ping genes and ignores genetic mismatches (i.e., genes harboring

variants are associated with only one trait from the pair). When

applied to identifying clusters of similar diseases or disease traits,

the method favors clusters of more polygenic diseases, which are

characterized by greater numbers of the observed overlaps (but

also by greater numbers of the observed mismatches).
The American
Degree of Surprise.Our next approach is inspired by outlier detec-

tion methods proposed in astronomy in the middle of 19th

century26,27 and recently extended in machine learning.28–34

When applied to uncovering genetically similar diseases, such

approaches aim to determine whether the number of matching

genetic causes observed for a considered pair of traits is signifi-

cantly larger than the number of genetic overlaps between any

random pair. We have extended standard methods by assuming
Journal of Human Genetics 89, 607–618, November 11, 2011 609



Table 2. Extent of Pleiotropy in Genes of the NHGRI Catalog

Method
Author Annotation
Methoda LD Methodb

Method Based on
NHGRI Mapped
Genes(Only Genes)c

Method Based on the
NHGRI Mapped Genes
(Genes and Loci)d

Method Based on
Taking All Genes
in the LD Blocke

Pleiotropic
(IMPf and NIMPg)

233 (16.9%) 138 (13.2%) 108 (15.4%) 166 (14.1%) 473 (18.6%)

Not pleiotropic 1147 (83.1%) 909 (86.8%) 592 (84.6%) 1008 (85.9%) 2064 (81.4%)

Total 1380 1047 700 1174 2537

Pleiotropic NIMPg 189 (14.2%) 101 (10%) 85 (12.6%) 127 (11.2%) 189 (14.2%)

Not pleiotropic 1147 (85.9%) 909 (90%) 592 (87.4%) 1008 (88.8%) 1147 (85.9%)

Total 1336 1010 677 1135 1336

a Author annotation method is the primary method adopted in this study where a gene was assigned to a SNP based on the decision of the authors of the original
study.
b For annotation based on LD, a gene was assigned to a SNP if the gene overlapped with that SNP, otherwise the nearest gene in the same LD block (based on
HapMap CEU population) was taken.
c Annotation based on a mapped gene feature of NHGRI catalog (gene only): genes are mapped to the SNP with the strongest association (NCBI); if the SNP is
located within a gene, that gene is listed and if the SNP is intergenic, the upstream and downstream genes are both listed. When using this method we restricted
the analysis only to those SNPs that were located in a gene.
d Annotation based on a mapped gene feature of NHGRI catalog (gene and locus): we followed the same procedure as above, but for those SNPs that were inter-
genic we conducted a locus analysis, described the extent of pleiotropy for these loci and added the loci to the genes.
e Annotation based ased on taking all genes in the LD block: This approach is based on the proposition that it is possible for any locus or gene within an LD block to
be associated with the reported SNP, and consequently to the phenotype.
f Genes associated with immune-mediated phenotypes only.
g Genes associated with nonimmune-mediated phenotypes.
that the presence of mismatching genetic causes of two diseases is

an indicator of their possible dissimilarity.

To illustrate this idea, consider five uniquely associated genes

harboring variants associated with trait A and 10 uniquely associ-

ated genes harboring variants associated with trait B. Assume that

the traits share two genes in common. In this example, there are

two matching and 13 mismatching genes harboring variants asso-

ciated with the pair {A,B}. In another example, a pair of traits {C,D}

shares two genes, and there are no other genes harboring variants

associated with either of these traits. The presence of thematching

genes in pair {A,B} indicates their possible similarity; however, the

pair is less similar than {C,D}, which has no genetic mismatches.

Our degree of surprise (DS) method identifies phenotype pairs

with a high number of matching or simultaneously absent genes

and a low number of geneticmismatches. The importance weights

of the matching and mismatching genes are proportional to the

surprise, that is inverse frequencies of their occurrences (see

Supplemental Methods Equation 1). In contrast to the indepen-

dent model, our DS approach does not assume that each gene

has an equal chance of being associated with all the phenotypes.

Also, the method does not rely on the restrictive assumption

that all the traits are unrelated—instead, it makes a much weaker

assumption that the genetically related traits are relatively infre-

quent. DS has a formal probabilistic interpretation and might be

viewed as the likelihood ratio of the similarity and dissimilarity

models, which allows for an easy accommodation of the noise

(false positive and false negative genotype-phenotype associa-

tions). The empirical p values of the adjusted DS criterion were

found to be useful for identifying both the existing and novel

couplings between phenotypes.

In order to identify genetically similar traits we have also consid-

ered more conventional approaches (data not shown) based on

correlations, cross-entropy, and Jensen’s divergence.35 These

methods are based on maximizing the degree of genetic overlap

or minimizing the degree of genetic mismatch but not both

criteria simultaneously. In contrast to the reported degree-of-
610 The American Journal of Human Genetics 89, 607–618, Novemb
surprise criterion, these methods were strongly biased to detect

either highly polygenic or monogenic traits.

Results

Genes

HGNC and Ensembl IDs were ascertained for 1380 genes

out of 1431 distinct genes (96%) contained in the NHGRI

catalog. These 1380 genes had been assigned HGNCnames

and subsequently contributed to the analyses (unless

otherwise specified).

Frequency of Pleiotropy

A total of 233 genes were defined as pleiotropic (16.9%

of all genes in the catalog). Table 2 shows how the

frequency of pleiotropy varies somewhat depending on

method of gene assignment in GWASs. All approaches,

however, show that pleiotropy is a common property

with 13.2%–18.6% of all genes demonstrating pleiotropy

as defined in this study. When immune-mediated pheno-

types were classified as a single group, 189 genes remained

pleiotropic.

Characterizing Pleiotropic Genes

Size. The median size of pleiotropic genes was 45.7 kb,

compared with a median of 38.7 kb for nonpleiotropic

genes (p ¼ 0.072; Mann-Whitney U test). When genes

harboring variants associated only with immune-mediated

phenotypes were excluded, the median size of pleiotropic

genes was 49.2 kb, significantly different than the size of

nonpleiotropic genes (p ¼ 0.022). The median size of the

pleiotropic genes harboring variants associated only with

immune-mediated phenotypes was 32.0 kb. The larger

size of pleiotropic compared to nonpleiotropic genes was

confirmed when this analysis was repeated employing
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Table 3. Extent of Pleiotropy in SNPs of the NHGRI Catalog

Method SNP Methoda LD Block Methodb

Pleiotropic (IMPc and NIMPd) 77 (4.6%) 109 (7.8%)

Not pleiotropic 1610 (95.4%) 1297 (92.3%)

Total 1687 1406

Pleiotropic NIMPd 53 (3.2%) 78 (5.7%)

Not pleiotropic 1610 (96.8%) 1297 (94.3%)

Total 1663 1375

a For author annotation method, we described the extent of pleiotropy in SNPs
by using exact matches of SNPs.
b For the LD blocks, we calculated the LD between all the GWAS hits used in
this analysis and collapsed those SNPs that were in high LD into single loci
(threshold for high LD r2 > 0.80).
c Genes associated with immune-mediated phenotypes only.
d Genes associated with nonimmune-mediated phenotypes.

Table 4. Location of Pleiotropic and Nonpleiotropic SNPs

Locationa

Number of SNPs

Pleiotropic Nonpleiotropic

IMP NIMP Overall
Overall
Percentage Number Percentage

Intergenicb 3 9 12 15.8 380 23.6

Upstreamc 3 3 6 7.9 159 9.9

50 UTRd 0 0 0 0 3 0.2

Exon 3 8 11 14.5 79 4.9

Intron 10 17 27 35.5 612 38.0

30 UTRe 0 0 0 0 25 1.6

Downstreamf 5 7 12 15.8 151 9.4

Within
noncoding
geneg

0 8 8 10.5 200 12.4

Total 24 52 76 100 1609 100

a Annotation provided by Ensembl.
b More than 5 kb upstream or downstream of a transcript.
c Within 5 kb upstream of the 50 end of a transcript.
d 50 untranslated region.
e 30 untranslated region.
f Within 5 kb downstream of the 30 end of a transcript.
g Within a gene that does not code for a protein.
the three more systematic gene assignment approaches

(see Material and Methods and Table S1).

Analysis of GO Terms. GOrilla recognized 1375 of the

1380 genes entered and 1316 were associated with GO

terms (see also Figures S1–S4). Of the significantly enriched

GO terms among pleiotropic genes (p < 9.73 10�6; hyper-

geometric methods) those most enriched were:

Lipid-Related Processes including macromolecular

complex remodeling (out of 15 GWAS genes associated

with this term, 11 were pleiotropic), protein-lipid

complex remodeling (11 out of 15 were pleiotropic),

plasma lipoprotein particle remodeling (11/15), pro-

tein-lipid complex subunit organization (11/16), plasma

lipoprotein particle organization (11/16), triglyceride

metabolic process (11/16), neutral lipid metabolic

process (12/18), acylglycerol metabolic process (12/18),

and glycerol ether metabolic process (12/19)

Immune system-Related Processes including interferon-

gamma-mediated signaling pathway (17/26), cellular

response to interferon-gamma (17/27), response to inter-

feron gamma (18/30), regulation of immune effector

process (19/39), response to lipopolysaccharide (18/37),

and positive regulation of T cell activation (18/37)

We thought that GO terms related to transcription

might have been enriched among pleiotropic genes;

however, we did not find evidence to support this. The

most enriched GO term relating to transcription was regu-

lation of transcription, DNA-dependent, associated with

214 GWAS genes, 54 of which were pleiotropic (p ¼
7.78 3 10 �4, nonsignificant).

SNPs

Frequency of Pleiotropy

There were 1687 distinct SNPs in the NHGRI catalog, and

all were included in the analysis. A total of 77 SNPs were

defined as pleiotropic (4.6% of all SNPs in the catalog).

Table 3 shows how the frequency of pleiotropy varies
The American
somewhat depending on method of SNP assignment in

GWASs. Both approaches, however, show that pleiotropy

is a relatively common property with 4.6%–7.8% of all

SNPs demonstrating pleiotropy as defined in this study.

When immune-mediated phenotypes were classified as

a single group, 53 SNPs remained pleiotropic.

Characterizing Pleiotropic SNPs

We found a significant association between pleiotropic

status and SNP location (p ¼ 0.024; Fisher’s exact test).

Pleiotropic SNPs were more likely to be exonic than non-

pleiotropic SNPs (14% of pleiotropic SNPs were exonic

compared to 4.9% of nonpleiotropic SNPs) and were less

likely to be intergenic (15.8% versus 23.6%) (Table 4).

We also found a significant association between pleio-

tropic status and SNP consequence (p ¼ 0.001; Fisher’s

exact test) (Table 5). Pleiotropic SNPs were more likely

to be structurally functional than nonpleiotropic SNPs

(5% of pleiotropic SNPs were structurally functional

compared to 0.4% of nonpleiotropic SNPs) and pleiotropic

SNPs were less likely to be regulatory (42.5% versus 49%).

Because the possibly regulatory category was dominated

by intronic SNPs, which might not all be regulatory, we

repeated the analysis, restricting the regulatory category

to only those annotated as regulatory or located upstream

or in the 50 UTR. The association with pleiotropic status re-

mained significant (p ¼ 0.001; Fisher’s exact test), with

a higher proportion of nonpleiotropic than pleiotropic

SNPs being regulatory.

When these analyses were repeated without HLA genes,

which are among the most polymorphic in the genome,
Journal of Human Genetics 89, 607–618, November 11, 2011 611



Table 5. Consequence to the Transcript Affected by Pleiotropic
and Nonpleiotropic SNPs

Consequence
for Transcripta

Number of SNPs

IMP NIMP Pleiotropic Nonpleiotropic

Structurally Functional

Deleterious
nonsynonymous
codingb

1 2 3 4

Frameshift coding – – – 1

Stop gained – 1 1 1

Subtotal (%) 1 3 4 (5.1%) 6 (0.4%)

Potentially regulatory

Upstream 3 3 6 159

50 UTR – – – 3

Intronic 10 17 27 612

30 UTR – – – 25

Annotated regulatory – 1 1 1

Subtotal (%) 13 21 34 (43.0%) 800 (49.1%)

Other

Intergenic, nonessential
splice sitec, tolerated
nonsynonymous coding,
synonymous coding,
downstream, within
noncoding gene,
NMD transcript

10 31 41 (51.9%) 824 (50.6%)

Totald 24 55 79 1630

a Annotation by Ensembl.
b Nonsynonymous Coding SNPs classified as deleterious if predicted to be
(probably) damaging by both SIFT and PolyPhen.
c Essential splice site: In the first 2 or last 2 base pairs of an intron.
Nonessential splice site: 1–3 bps into an exon or 3–8 bps into an intron.
d Twenty SNPs are present in more than one category.
and also particularly enriched for coding variation, the

patterns were similar.
Association of Disease Class with the Extent of

Pleiotropy

We found that the extent of pleiotropy is associated with

certain disease classes (Table 6). The proportion of pleio-

tropic genes was significantly increased in all three disease
Table 6. Extent of Pleiotropy in Different Disease Classes

Disease Class

Genes

Pleiotropic (%) Nonpleiotropic (%)

All (comparison group) 233 (16.9) 1147 (83.1)

Immune-mediated phenotypes 106 (37.7) 175 (62.3)

Cancer 49 (34.8) 92 (65.2)

Metabolic syndrome 79 (28.5) 198 (71.5)

a Fisher’s exact test p value.
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classes studied for both genes and SNPs (aside from cancer

SNPs) (Fisher’s exact test); 37.7% of genes that harbored

variants associated with immune-mediated phenotypes,

34.8% of genes that harbored variants associated with

cancer, and 28.5% of genes that harbored variants associ-

ated with the metabolic syndrome were pleiotropic,

compared to 16.9% of all GWAS genes. In addition, 8.3%

of SNPs associated with immune-mediated phenotypes,

4.8% of SNPs associated with cancer, and 8.4% of SNPs

associated with the metabolic syndrome were pleiotropic,

compared to 4.6% of all GWAS SNPs.
Clusters of Phenotypes Linked by Pleiotropic Genes

We present several figures illustrating constellations of

diseases and disease traits linked by pleiotropic connec-

tions (Figures S5–S14). An example is given in Figure 2

showing abundant pleiotropic links for Crohn disease;

some of these links, as with leprosy (LPRS1 [MIM

609888]), are unexplained and might be worth further

consideration. For a sample of these links we have assessed

the likelihood that the patterns seen are due to chance.

Results of three different approaches are presented in

Tables 7 and 8. In Table 7 we present several examples

selected because the links between certain correlations

looked interesting based on an independent model, such

as between schizophrenia (SCZD [MIM 181500]) and iron

status or plasma urate, PSA and several cancers, SLE and

blood cell parameters, pigmentation traits and nonmela-

noma cancers, and immune-mediated disease and infec-

tions or cancer, but in which further analysis by the DS

approach showed that these were likely to be represent

chance findings.

DS measures for selected traits that share genes are

shown in Table 8. In the first example, one (HBB [MIM

141900]) out of two genes harboring variants associated

with fetal hemoglobin and F cell distribution is also associ-

ated with malaria (MIM 611162) (DS value ¼ 0.001)

(rs4910742 is associated with levels of fetal hemoglobin

and rs11036238 is associated with increased risk of ma-

laria) thus confirming a known biological relationship (as

discussed below). In the second example, one (ABCG8

[MIM 605460]) out of two genes harboring variants associ-

ated with serum campesterol is also associated with gall-

stones (GBD1 [MIM 600803]) (DS value ¼ 0.001)
SNPs

p Valuea Pleiotropic (%) Nonpleiotropic (%) p Valuea

– 77 (4.6) 1610 (95.4) –

<0.0001 31 (8.3) 343 (91.7) 0.0066

<0.0001 8 (4.8) 158 (95.2) 0.8456

<0.0001 30 (8.4) 327 (91.6) 0.0056

er 11, 2011



CDKAL1, FADS1, GCKR, THADA

CPEB4, SH2B1

FUT2, RASIP1

(23 GENES)IRF1, SLC22A4, 
SLC22A5

NOD2, TNFSF15

FADS1, GCKR

Breast cancer (ZMIZ1, ZNF365)
Chronic Lymphocytic Lymphoma (SP140)
Glioma (RTEL1)
Hodgkin’s Lymphoma (REL)
Myeloproliferative neoplasms (JAK2)
Prostate cancer (THADA)

Soluble ICAM-1 (ICAM1)
Parkinson’s disease (LRRK2)
Serum magnesium (MUC1)
Menarche (age at onset) (PLCL1)
Height (SLC22A5)
Polycystic ovary syndrome (THADA)

Resting heart rate (FADS1)
Vitamin B12 (FUT2)
C-reactive protein (GCKR)
eGFR (GCKR)
Serum albumin (GCKR)
Serum uric acid (GCKR)

FADS1

Leprosy

Fibrinogen

Type 2 Diabetes or
Glycaemic traits

Weight-related traits
Hypertriglyceridaemia
and/or Triglycerides

Cancer

Retinal vascular calibre

Intracranial aneurysm

HDL Cholesterol

Other immune 
mediated diseases

PLCL1

CROHN’S 
DISEASE

Figure 2. Genes Harboring Variants Associated with Crohn Disease and Other Phenotypes
Genes harboring variants associated with other immune-mediated diseases: variants in BACH2, type 1 diabetes and celiac disease; vari-
ants inC11orf30 – atopic dermatitis; variants inCCR6 – RA and vitiligo; variants inDENND1B, asthma; variants in ICOSLG, celiac disease;
variants in IL10, type 1 diabetes, ulcerative colitis, and Behcet disease; variants in IL12B, psoriasis and psoriatic arthritis; variants in
IL18R1, asthma and celiac disease; variants in IL18RAP, celiac disease; variants in IL1RL1, eosinophil count and celiac disease; variants
in IL23R, inflammatory bowel disease, psoriasis, ulcerative colitis, ankylosing spondylitis, and Behcet disease; variants in IL27, early-
onset inflammatory bowel disease and type 1 diabetes; variants in IL2RA, multiple sclerosis, rheumatoid arthritis, type 1 diabetes, viti-
ligo, and alopecia areata; variants in MST1, ulcerative colitis and primary sclerosing cholangitis; variants in ORMDL3, asthma, primary
biliary cirrhosis, type 1 diabetes, ulcerative colitis, and white blood cell count; variants in PTPN2, type 1 diabetes and celiac disease; vari-
ants in PTPN22, rheumatoid arthritis and type 1 diabetes; variants in REL, Hodgkin lymphoma, celiac disease, psoriasis, rheumatoid
arthritis, and ulcerative colitis; variants in SMAD3, asthma; variants in STAT3, multiple sclerosis; variants in TAGAP, celiac disease; vari-
ants in TYK2, psoriasis and type 1 diabetes; variants in ZMIZ1, breast cancer, celiac disease, and inflammatory bowel disease.
(rs41360247 and rs4245791 are associated with levels of

campesterol and rs11887534 is associated with increased

risk of gallstones). In the third example, one (HLA-DRB1)

out of two genes harboring variants associated with immu-

noglobin A is also associated with juvenile idiopathic

arthritis (JIA) (DS value ¼ 0.001) (rs2395148 is associated
Table 7. Likelihood of Observed Gene Sharing between Selected Pairs
for Selected Trait Pairs

Trait

Number
of Genes
Associated
to Trait Other Trait

Number
of Genes
Associated to
Other Trait

Nu
of
Sha
bet
Tra

Schizophrenia 16 iron markers 7 2

Schizophrenia 16 uric acid and gout 16 2

Cancer-related traits 154 PSA 6 4

Cancer-related traits 154 pigmentation traits 19 5

Cancer-related traits 154 immune traits 265 19

Infections 29 immune traits 265 5

SLE 26 corpuscular volume 29 3

a Criterion is corrected for the noise in the data, namely the possibility of false po
comparison between the DS approach and the independent model, we assumed
GWAS corpus; we also replaced the random sampling of pairs of diseases and/or

The American
with increased risk of idiopathic JIA [MIM 604302] and

rs2187668 and rs9271366 are associated with levels of

immunoglobulin A). These latter two examples generate

hypotheses regarding disease etiology. The biological

plausibility of the findings is discussed in the following

section.
of Different Traits and a Comparison of ThreeModeling Approaches

mber
Genes
red
ween
its

p Values

Independent Model

Degree of Surprise,
Accounting for
Dissimilaritiesa

Estimated Total
Number of Genes,
n ¼ 20,000

Genes Present
in the NHGRI
Catalog, n ¼ 1380

1.60 3 10�5 0.003 0.76

8.10 3 10�5 0.0143 0.85

1.80 3 10�7 0.0043 0.98

4.90 3 10�7 0.0428 0.98

1.00 3 10�12 0.0101 1

5.10 3 10�5 0.1706 0.99

8.70 3 10�6 0.0157 0.94

sitives and false negatives (see Supplemental Data for details). To ensure a fair
that the probabilities of genetic matches pi were identical for all genes in the
traits by an exhaustive averaging over all ng ðng þ 1Þ=2 combinations.
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Table 8. Likelihood of Observed Gene Sharing between Pairs of Disease Traits: Ranked by p Value from Degree of Surprise, Accounting for
Dissimilarity Approach

Trait

Number
of Genes
Associated
to Trait Other Trait(s)

Number
of Genes
Associated
to Other Trait

Genes Shared
between Traits

p Values

Independent Model

Degree
of Surprise,
Accounting for
Dissimilaritiesa

Estimated
Total Number
of Genes,
n ¼ 20,000

Genes Present
in the NHGRI
Catalog,
n ¼ 1380

Fetal hemoglobin 2 malaria 1 HBB 0.0001 0.0014 0.0009

Gallstones 1 serum campesterol 2 ABCG8 0.0001 0.0014 0.0008

Immunoglobin A 2 JIA 1 HLA-DRB1 0.0001 0.0014 0.0008

Knee osteoarthritis 3 narcolepsy 1 HLA-DQA2 0.0001 0.0022 0.0009

Venous
thromboembolism

1 angiotensin-converting
enzyme activity

2 ABO 0.0001 0.0014 0.0011

serum campesterol 2 ABO 0.0001 0.0014 0.0008

serum soluble
e-selectin

1 ABO 5.0 3 10�5 0.0007 0.0004

serum soluble
P-selectin

2 ABO 0.0001 0.0014 0.001

ICAM-1 2 ABO 0.0001 0.0014 0.0011

TNFa 1 ABO 5.0 3 10�5 0.0007 0.0004

a Criterion is corrected for the noise in the data, namely the possibility of false positives and false negatives (see Supplemental Data for details). To ensure a fair
comparison between the DS approach and the independent model, we assumed that the probabilities of genetic matches pi were identical for all genes in the
GWAS corpus; we also replaced the random sampling of pairs of diseases and/or traits by an exhaustive averaging over all ng ðng þ 1Þ=2 combinations.
Discussion

Pleiotropy in the Genetics of Complex Disease

With the recent discovery of many common genetic vari-

ants influencing disease and disease traits, there is an

increasing interest in the detection of pleiotropy.7–13 We

have performed a systematic evaluation of all genetic vari-

ants from all GWAS studies published up to January 4,

2011, and associated with more than one different pheno-

type. Pierce and Ahsan11 describe a pleiotropy scan and

illustrate this in the detection of SNPs associated with

pancreatic cancer, and other groups have proposed a phe-

nome scan36,37 that aims to measure all phenotypes—the

phenome—related to specified genetic variants (or envi-

ronmental exposures).

Frequency of Pleiotropy

There is no consensus on the extent of pleiotropy in the

human genome.38 It has been proposed that pleiotropy is

universal,39 modular,40 or infrequent.41–43 In this review,

we show that pleiotropy is found to be a property of

~17% of genes and ~5% of SNPs known to be associated

with diseases or disease traits. Analyses adopting three

comprehensive systematic approaches confirmed that plei-

otropy is common and associated with 13.2%–18.6% of

genes and 4.6%–7.8% SNPs and support the conclusion

that this substantial level of pleiotropy is not falsely in-

flated because of an author-annotation bias.

These all are likely to be minimum estimates given the

conservative definitions used in this report (in an attempt
614 The American Journal of Human Genetics 89, 607–618, Novemb
to avoid inflation of estimates because of highly correlated

traits and/or diseases) and because of the rapid rise in

reported associations and the large number of common

and rare variant associations yet to be found.44

Pleiotropic Genes

We show that pleiotropic genes are longer than nonpleio-

tropic genes (this is consistent across all analytic methods

employed—see Table S1), an effect that might be mediated

by two interacting effects. First, longer genes might encode

an increased number of protein structural domains, which

might in turn give rise to multiple functions; second,

longer genes tend to containmore variants with a concom-

itant rise in the opportunity for some to be involved in

different functions. The GO terms significantly enriched

among pleiotropic genes reflect the fact that immune-

mediated diseases and metabolic syndrome-related traits

are overrepresented among pleiotropic gene associations.

The GO terms highlighted are either the biological

processes most amenable to pleiotropic effects or are due

to confounding, and another property of genes in these

disease classes causes their pleiotropy (Figure 1).

Pleiotropic SNPs

We show that pleiotropic SNPs are more likely to be exonic

and structurally functional than nonpleiotropic SNPs. Our

data does not support our a priori hypothesis that pleio-

tropic SNPs would be more likely to be present in regula-

tory regions that nonpleiotropic SNPs. We repeated these

analyses separately for immune-mediated phenotypes
er 11, 2011



because of concerns about possible confounding (see

Figure 1) but the findings were unchanged.

Clusters of Phenotypes Defined by Pleiotropic Links

By systematically evaluating all gene-trait and SNP-trait

associations in the NHGRI catalog and observing the

various constellations of diseases and traits that arose, it

is possible to contribute evidence to the understanding

of disease etiology and pathogenesis by (1) suggesting

hypotheses and adding evidence to hypotheses for which

there is currently a paucity of data and (2) adding evidence

to established hypotheses surrounding the etiology of

disease. We note that if a phenotype pair is, after further

research, shown to have a causal relationship, then the

gene associated with both these phenotypes should no

longer strictly be considered as pleiotropic, because this

would now be an example of variation in one phenotype

causing variation in the second phenotype. However, until

etiological hypotheses are shown to be correct and a causal

relationship accepted, we will describe genes harboring

variants associated with two correlated phenotypes as

pleiotropic. We present examples of constellations of

diseases and traits in Figures S5–S14.

We demonstrate that calculation of simple probabilities

(by using the independent model) would wrongly assign

many pleiotropic associations as statistically significant. For

example, a relationship between schizophrenia and serum

iron markers45–47 and between schizophrenia and serum

uric acid levels48,49havebeen suggested.A simpleprobability

calculation (Table 7) suggests that these pleiotropic associa-

tions are unlikely to be due to chance and might suggest

further research on this topic. However, our more stringent

DS criterion, which takes into account (1) only genes

harboring variants associated with one or more traits to

date (i.e., not all of the more than 20,000 genes), (2) the

number ofmismatching genes as themarker of dissimilarity

between traits (and therefore our criterion does not overesti-

mate similarities between polygenic traits as other common

approaches do), (3) false negatives (true gene-trait associa-

tions that did not reach a genome-wide significance level),

and (4) false positives (althoughunlikely, given the stringent

p values used in GWAS) and (5) accommodates the binary

nature of the present/absent genetic overlaps, clearly shows

this gene sharing as likely to be due to chance.

We have listed in Table 8 the top ranked correlations

between diseases and/or traits with this approach. The

top ranked correlation is that between fetal hemoglobin

and malaria risk, which confirms a known biological rela-

tionship. The protective properties of high concentrations

of fetal hemoglobin in erythrocytes during the first few

months of life have been known since the 1970s to offer

resistance to infection with Plasmodium falciparum,50 and

the physiological mechanisms have been described.51

This demonstrates the potential of this method of studying

similarity of genetic causes between two traits to correctly

identify shared disease mechanisms and motivate func-

tional research.
The American
The second ranked finding was the ABCG8 pleiotropic

association between serum campesterol and gallstones

risk. Gallstones often have a high content of cholesterol,

and cholesterol oversaturation is one of the main risk

factors in gallstone etiology.52,53 Cholesterol absorption

and secretion into bile is affected by phytosterols

(including campesterol) but also by genetic variants in

ABCG8.54,55 Thus, it is biologically plausible that serum

campesterol and gallstones share a common pathway

and this merits further study.

Our approach also identified the HLA-DRB1 pleiotropic

associations with JIA and immunoglobulin A (IgA) as

very unlikely to be due to chance. High IgA levels have

been reported in a patient with JIA.56 Gilliam et al.57

have shown that JIA patients with joint erosions and

joint-space narrowing had significantly elevated levels of

IgA. The etiology of JIA is unclear, but because of similarity

in genetic influences on IgA and JIA, it is possible that

these traits share a common pathophysiological pathway

and our findings support further investigation of the

involvement of IgA in JIA etiology.

The biological significance of the potentially significant

overlap between the pathophysiological pathways of

narcolepsy and osteoarthritis is less clear. Osteoarthritis

is a chronic degenerative disorder related to aging, but

studies have also shown a strong genetic component.

However, pathophysiological mechanisms have not been

clarified.58 Narcolepsy is caused by the deficiency of hypo-

cretin.59 An autoimmune etiology has been suggested

because of the very strong association with the HLA

subtype DQB1*0602.60,61 The same rationale might sug-

gest an autoimmune component to osteoarthritis etiology.

However, at this point the basis for the shared genetic

influences in these conditions is not clear.

We identified a significant genetic sharing (through ABO

[MIM 110300]) between angiotensin-converting enzyme

activity, venous thromboembolism [MIM 188050] and

serum campesterol, and between TNFa and soluble adhe-

sion molecules E-selectin, P-selectin, and ICAM-1. Many

of these associations have been previously reported in

the literature,62–66 and our findings suggest that these

merit further study.

Implications of Findings

It is likely that there was a degree of misclassification of

genes and/or SNPs into pleiotropic and nonpleiotropic

categories. We attempted to limit this by adopting several

approaches to gene and SNP assignment including system-

atic approaches that should not be affected by observer

bias that could have been present in author-annotated

genes (for example, a tendency to assign associations to

larger genes or to genes for whom the function is known).

Furthermore, we defined and systematically employed

a series of exclusion criteria in order to obtain a conserva-

tive definition of pleiotropy and to attempt to limit the

degree of subjectivity in the definition of pleiotropy (for

example to avoid the recognized upward bias in pleiotropy
Journal of Human Genetics 89, 607–618, November 11, 2011 615



estimates that occurs if trait correlations are not taken into

account as in the exclusion criteria in this study). The

majority of available data at present relate to Northern

American and European white populations, and so it is

not possible to assess whether these findings might vary

in other ethnic groups.

As Wagner and Zhang67 have noted, we can only assess

pleiotropy in the context of which characters have been

already been studied. Therefore labeling a gene or SNP as

nonpleiotropic is always subject to further research. In

this study we have investigated the findings for three illus-

trative disease groups for which there are sufficient data. In

future it might be possible to extend this analysis more

generally to other disease groups. We studied and reported

these separately because we considered that certain disease

classes might exhibit a higher frequency of pleiotropy. It is

possible that this finding could simply be due to an artifact

because these diseases have been explored by GWASs in

greater depth. When all disease classes have been thor-

oughly examined, apparent differences in the frequency

of pleiotropy might not appear so pronounced. We have

accounted for a small probability of false positive and false

negative GWAS associations in the adjusted degree-of-

surprise method. However, mislabeling a gene as pleio-

tropic could have occurred because of reporting bias.

Finally, in many cases only markers in linkage disequilib-

rium with the true causal variant are recorded in the

NHGRI catalog, rather than the true causal variant itself.

Notwithstanding these limitations, our results suggest

that pleiotropy is common in the genetics of complex

disease, and 16.9% of genes and 4.6% of SNPs recorded

in the NHGRI catalog are defined as pleiotropic. Addition-

ally, we have characterized pleiotropic genes as being larger

than nonpleiotropic genes and pleiotropic SNPs as more

likely to be structurally functional and located exonically

and downstream than nonpleiotropic SNPs.

The impact of pleiotropy on genetic testing for common,

complex diseases in clinical and research settings has been

recognized and described with APOE [MIM 107741] as an

exemplar68–70 but has perhaps not received sufficient

emphasis. Companies offering direct-to-consumer testing

and consumers taking this up should be aware that any

variants about which they gain information could, in the

future, be found to be associated with additional (poten-

tially more stigmatizing or untreatable) diseases. An under-

standing of pleiotropic effects is also of key importance for

drug development. For example, although statins inhibit

HMG-CoA reductase, they also have multiple other molec-

ular actions with effects beyond cholesterol reduction,71

and this has been proposed as the basis for their efficacy

in the reduction of cardiovascular outcomes.72,73 Similarly,

selective serotonin reuptake inhibitors have been found to

be effective across different psychiatric disorders because

they act on a pathway common to these differing disor-

ders.36 When a gene has been shown to have opposing

effects on different common diseases (as has been recently

described)74 then this is likely to greatly complicate drug
616 The American Journal of Human Genetics 89, 607–618, Novemb
development and marketing, although knowledge of

pleiotropic associations could help to predict side effects.

These issues are likely to gain in importance as the full

extent of pleiotropy in the genome becomes apparent.

More generally, gaining insight into the level of genetic

connectivity between different diseases and disease traits

gives the opportunity to deduce whether our current clas-

sification and categorization of diseases is valid genetically

or whether genetic similarities traverse current divisions.

This insight might be particularly useful when considering

diseases that have a clinically derived diagnosis and lack

validated diagnostic tests (such as a number of psychiatric

disorders).
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