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Abstract

The maximisation of information transmission over noisy channels
is a common, albeit generally computationally difficult problem.
We approach the difficulty of computing the mutual information
for noisy channels by using a variational approximation. The re-
sulting IM algorithm is analagous to the EM algorithm, yet max-
imises mutual information, as opposed to likelihood. We apply the
method to several practical examples, including linear compression,
population encoding and CDMA.

1 Introduction

The reliable communication of information over noisy channels is a widespread issue,
ranging from the construction of good error-correcting codes to feature extraction[3,
12]. In a neural context, maximal information transmission has been extensively
studied and proposed as a principal goal of sensory processing[2, 5, 7]. The central
quantity in this context is the Mutual Information (MI) which, for source variables
(inputs) x and response variables (outputs) y, is

I(x,y) ≡ H(y) − H(y|x), (1)

where H(y) ≡ −〈log p(y)〉p(y) and H(y|x) ≡ −〈log p(y|x)〉p(x,y) are marginal and
conditional entropies respectively, and angled brackets represent averages. The
goal is to adjust parameters of the mapping p(y|x) to maximise I(x,y). Despite
the simplicity of the statement, the MI is generally intractable for all but special
cases. The key difficulty lies in the computation of the entropy of p(y) (a mixture).

One such tractable special case is if the mapping y = g(x;Θ) is deterministic and
invertible, for which the difficult entropy term trivially becomes

H(y) = 〈log |J|〉p(y) + const. (2)

Here J = {∂yi/∂xj} is the Jacobian of the mapping. For non-Gaussian sources
p(x), and special choices of g(x;Θ), the minimization of (1) with respect to the
parameters Θ leads to the infomax formulation of ICA[4].

Another tractable special case is if the source distribution p(x) is Gaussian and the
mapping p(y|x) is Gaussian.
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Figure 1: An illustration of the form of a more
general mixture decoder. x represents the sources
or inputs, which are (stochastically) encoded as
y. A receiver decodes y (possibly with the aid of
auxiliary variables z).

However, in general, approximations of the MI need to be considered. A variety of
methods have been proposed. In neural coding, a popular alternative is to maximise
the Fisher ‘Information’[5]. Other approaches use different objective criteria, such
as average reconstruction error.

2 Variational Lower Bound on Mutual Information

Since the MI is a measure of information transmission, our central aim is to maximise
a lower bound on the MI. Using the symmetric property of the MI, an equivalent
formulation of the MI is I(x,y) = H(x) − H(x|y). Since we shall generally be
interested in optimising MI with respect to the parameters of p(y|x), and p(x) is
simply the data distribution, we need to bound H(x|y) suitably. The Kullback-
Leibler bound

∑

x
p(x|y) log p(x|y) − p(x|y) log q(x|y) ≥ 0 gives

I(x,y) ≥ H(x)
︸ ︷︷ ︸

“entropy′′

+ 〈log q(x|y)〉p(x,y)
︸ ︷︷ ︸

“energy′′

def
= Ĩ(x,y). (3)

where q(x|y) is an arbitrary variational distribution. The bound is exact if q(x|y) ≡
p(x|y). The form of this bound is convenient since it explicitly includes both the
encoder p(y|x) and decoder q(x|y), see fig(1).

Certainly other well known lower bounds on the MI may be considered [6] and
a future comparison of these different approaches would be interesting. However,
our current experience suggests that the bound considered above is particularly
computationally convenient. Since the bound is based on the KL divergence, it is
equivalent to a moment matching approximation of p(x|y) by q(x|y). This fact
is highly beneficial in terms of decoding, since mode matching approaches, such
as mean-field theory, typically get trapped in the one of many sub-optimal local
minima. More successful decoding algorithms approximate the posterior mean[10].

The IM algorithm

To maximise the MI with respect to any parameters θ of p(y|x, θ), we aim to
push up the lower bound (3). First one needs to choose a class of variational
distributions q(x|y) ∈ Q for which the energy term is tractable. Then a natural

recursive procedure for maximising Ĩ(X,Y ) for given p(x), is

1. For fixed q(x|y), find θnew = arg maxθ Ĩ(X,Y )

2. For fixed θ, qnew(x|y) = arg maxq(x|y)∈Q Ĩ(X,Y ), where Q is a chosen class
of distributions.

These steps are iterated until convergence. This procedure is analogous to the
(G)EM algorithm which maximises a lower bound on the likelihood[9]. The differ-
ence is simply in the form of the “energy” term.

Note that if |y| is large, the posterior p(x|y) will typically be sharply peaked around
its mode. This would motivate a simple approximation q(x|y) to the posterior,



Figure 2: The MI optimal linear projection of data x (dots) is not always
given by PCA. PCA projects data onto the vertical line, for which the entropy
conditional on the projection H(x|y) is large. Optimally, we should project
onto the horizontal line, for which the conditional entropy is zero.

significantly reducing the computational complexity of optimization. In the case
of real-valued x, a natural choice in the large |y| limit is to use a Gaussian. A
simple approximation would then be to use a Laplace approximation to p(x|y) with

covariance elements [Σ−1]ij = ∂2 log p(x|y)
∂xi∂xj

. Inserted in the bound, this then gives a

form reminiscent of the Fisher Information[5]. The bound presented here is arguably
more general and appropriate than presented in [5] since, whilst it also tends to the
exact value of the MI in the limit of a large number of responses, it is a principled
bound for any response dimension.

Relation to Conditional Likelihood

Consider an autoencoder x → y → x̃ and imagine that we wish to maximise the
probability that the reconstruction x̃ is in the same s state as x:

log p(x̃ = s|x = s) = log

∫

y

p(x̃ = s|y)p(y|x = s)

Jensen
︷︸︸︷

≥ 〈log p(x̃ = s|y)〉p(y|x=s)

Averaging this over all the states of x:
∑

s

p(x = s) log p(x̃ = s|x = s) ≥
∑

s

〈log p(x̃ = s|y)〉p(x=s,y) ≡ 〈log q(x|y)〉p(x,y)

Hence, maximising Ĩ(X,Y ) (for fixed p(x)) is the same as maximising the lower
bound on the probability of a correct reconstruction. This is a reassuring property
of the lower bound. Even though we do not directly maximise the MI, we also indi-
rectly maximise the probability of a correct reconstruction – a form of autoencoder.

Generalisation to Mixture Decoders

A straightforward application of Jensen’s inequality leads to the more general result:

I(X,Y ) ≥ H(X) + 〈log q(x|y, z)〉p(y|x)p(x)q(z) ≡ Ĩ(X,Y )

where q(x|y, z) and q(z) are variational distributions. The aim is to choose q(x|y, z)
such that the bound is tractably computable. The structure is illustrated in fig(1).

3 Linear Gaussian Channel : Improving on PCA

A common theme in linear compression and feature extraction is to map a (high
dimensional) vector x to a (lower dimensional) vector y = Wx such that the infor-
mation in the vector x is maximally preserved in y. The classical solution to this
problem (and minimizes the linear reconstruction error) is given by PCA. However,
as demonstrated in fig(2), the optimal setting for W is, in general not given by the
widely used PCA.

To see how we might improve on the PCA approach, we consider optimising our
bound with respect to linear mappings. We take as our projection (encoder) model,



p(y|x) ∼ N (Wx, s2I), with isotropic Gaussian noise. The empirical distribu-

tion is simply p(x) ∝
∑P

µ=1 δ(x − xµ), where P is the number of datapoints.
Without loss of generality, we assume the data is zero mean. For a decoder
q(x|y) = N (m(y),Σ(y)), maximising the bound on MI is equivalent to minimising

P∑

µ=1

〈
(x − m(y))T Σ−1(y)(x − m(y)) + log det Σ(y)

〉

p(y|xµ)

For constant diagonal matrices Σ(y), this reduces to minimal mean square recon-
struction error autoencoder training in the limit s2 → 0. This clarifies why autoen-
coders (and hence PCA) are a sub-optimal special case of MI maximisation.

Linear Gaussian Decoder

A simple decoder is given by q(x|y) ∼ N (Uy, σ2I), for which

Ĩ(x,y) ∝ 2tr(UWS) − tr(UMUT ), (4)

where S = 〈xxT 〉 =
∑

µ xµ(xµ)T /P is the sample covariance of the data, and

M = Is2 + WSWT (5)

is the covariance of the mixture distribution p(y). Optimization of (4) for U leads
to SWT = UM. Eliminating U, this gives

Ĩ(x,y) ∝ tr
(
SWT M−1WS

)
(6)

In the zero noise limit, optimisation of (6) produces PCA. For noisy channels, un-
constrained optimization of (6) leads to a divergence of the matrix norm ‖WWT ‖∞;
a norm-constrained optimisation in general produces a different result to PCA. The
simplicity of the linear decoder in this case severely limits any potential improvement
over PCA, and certainly would not resolve the issue in fig(2). For this, a non-linear
decoder q(x|y) is required, for which the integrals become more complex.

Non-linear Encoders and Kernel PCA

An alternative to using non-linear decoders to improve on PCA is to use a non-linear
encoder. A useful choice is

p(y|x) = N (WΦ(x), σ2I)

where Φ(x) is in general a high dimensional, non-linear embedding function, for
which W will be non-square. In the zero-noise limit the optimal solution for the en-
coder results in non-linear PCA on the covariance 〈Φ(x)Φ(x)T 〉 of the transformed
data. By Mercer’s theorem, the elements of the covariance matrix may be replaced
by a Kernel function of the users choice[8]. An advantage of our framework is that
our bound enables the principled comparison of embedding functions/kernels.

4 Binary Responses (Neural Coding)

In a neurobiological context, a popular issue is how to encode real-valued stimuli
in a population of spiking neurons. Here we look briefly at a simple case in which
each neuron fires (yi = 1) with increasing probability the further the membrane
potential wT

i x is above threshold −bi. Independent neural firing suggests:

p(y|x) =
∏

i

p(yi|x)
def
=
∏

σ(yi(w
T
i x + bi)). (7)



Figure 3: Top row: a subset of the original real-valued source data. Middle row: after
training, 20 samples from each of the 7 output units, for each of the corresponding source
inputs. Bottom row: Reconstruction of the source data from 50 samples of the output
units. Note that while the 8th and the 10th patterns have closely matching stochastic
binary representations, they differ in the firing rates of unit 5. This results in a visibly
larger bottom loop of the 8th reconstructed pattern, which agrees with the original source
data. Also, the thick vertical 1 (pattern 3) differs from the thin vertical eight (pattern 6)
due to the differences in stochastic firings of the third and the seventh units.

Here the response variables y ∈ {−1,+1}|y|, and σ(a)
def
= 1/(1 + e−a). For the

decoder, we chose a simple linear Gaussian q(x|y) ∼ N (Uy,Σ). In this case, exact
evaluation of the bound (3) is straightforward, since it only involves computations
of the second-order moments of y over the factorized distribution.

A reasonable reconstruction of the source x? from its representation y will be given
by the mean x̃ = 〈x〉q(x|y) of the learned approximate posterior. In noisy channels
we need to average over multiple possible representations, i.e. x̃ = 〈〈x〉q(x|y)〉p(y|x?).

We performed reconstruction of continuous source data from stochastic binary re-
sponses for |x| = 196 input and |y| = 7 output units. The bound was optimized
with respect to the parameters of p(y|x) and q(x|y) with isotropic norm constraints
on W and b for 30 instances of digits 1 and 8 (15 of each class). The source variables
were reconstructed from 50 samples of the corresponding binary representations at
the mean of the learned q(x|y), see fig(3).

5 Code Division Multiple Access (CDMA)

In CDMA[11], a mobile phone user j ∈ 1, . . . ,M wishes to send a bit sj ∈ {0, 1} of
information to a base station. To send sj = 1, she transmits an N dimensional real-
valued vector gj , which represents a time-discretised waveform (sj = 0 corresponds
to no transmission). The simultaneous transmissions from all users results in a
received signal at the base station of

ri =
∑

j

gj
i sj + ηi, i = 1, . . . , N, or r = Gs + η

where ηi is Gaussian noise. Probabilistically, we can write

p(r|s) ∝ exp
{

− (r − Gs)
2
/(2σ2)

}

.

The task for the base station (which knows G) is to decode the received vector r
so that s can be recovered reliably. For simplicity, we assume that N = M so that
the matrix G is square. Using Bayes’ rule, p(s|r) ∝ p(r|s)p(s), and assuming a flat
prior on s,

p(s|r) ∝ exp
{
−
(
−2rT Gs + sT GT Gs

)
/(2σ2)

}
(8)

Computing either the MAP solution arg maxs p(s|r) or the MPM solution
arg maxsj

p(sj |r), j = 1, . . . ,M is, in general, NP-hard.



If GT G is diagonal, optimal decoding is easy, since the posterior factorises, with

p(sj |r) ∝ exp

{(

2
∑

i

riGji − Djj

)

sj/(2σ2)

}

where the diagonal matrix D = GT G (and we used s2
i ≡ si for si ∈ {0, 1}). For

suitably randomly chosen matrices G, GT G will be approximately diagonal in the
limit of large N . However, ideally, one would like to construct decoders that perform
near-optimal decoding without recourse to the approximate diagonality of GT G.
The MAP decoder solves the problem

min
s∈{0,1}N

(
sT GT Gs − 2sT GT r

)
≡ min

s∈{0,1}N

(
s − G−1r

)T
GT G

(
s − G−1r

)

and hence the MAP solution is that s which is closest to the vector G−1r. The
difficulty lies in the meaning of ‘closest’ since the space is non-isotropically warped
by the matrix GT G. A useful guess for the decoder is that it is the closest in the
Euclidean sense to the vector G−1r. This is the so-called decorrelation estimator.

Computing the Mutual Information

Of prime interest in CDMA is the evaluation of decoders in the case of non-
orthogonal matrices G[11]. In this respect, a principled comparison of decoders
can be obtained by evaluating the corresponding bound on the MI1,

I(r, s) ≡ H(s) − H(s|r) ≥ H(s) +
∑

r

∑

s

p(s)p(r|s) log q(s|r) (9)

where H(s) is trivially given by M (bits). The bound is exact if q(s|r) = p(s|r).

We make the specific assumption in the following that our decoding algorithm takes
the factorised form q(s|r) =

∏

i q(si|r) and, without loss of generality, we may write

q(si|r) = σ ((2si − 1)fi(r)) (10)

for some decoding function fi(r). We restrict interest here to the case of simple
linear decoding functions

fi(r) = ai +
∑

j

wijrj .

Since p(r|s) is Gaussian, (2si − 1)fi(r) ≡ xi is also Gaussian,

p(xi|s) = N (µi(s), vari), µi(s) ≡ (2si − 1)(ai + wT
i Gs), vari ≡ σ2wT

i wi

where wT
i is the ith row of the matrix [W ]ij ≡ wij . Hence

−H(s|r) ≥
∑

i

1
√

2πσ2wT
i wi

〈∫ ∞

x=−∞

[log σ (x)] e−[x−(2si−1)(ai+w
T
i Gs)]2/(2σ2

w
T
i wi)

〉

p(s)

(11)
In general, the average over the factorised distribution p(s) can be evaluated by
using the Fourier Transform [1]. However, to retain clarity here, we constrain the
decoding matrix W so that wT

i Gs = bisi, i.e. WG = diag(b), for a parameter
vector b. The average over p(s) then gives

−H(s|r) ≥
1

2

∑

i

〈

log σ (x) (1 + e−[−2xbi−4xai+2aibi+b2i ]/(2σ2
w

T
i wi)

〉

N (−ai,var=σ2w
T
i
wi)

,

(12)

1Other variational methods may be considered to approximate the normalisation con-
stant of p(s|r)[13], and it would be interesting to look into the possibility of using them in
a MI approximation, and also as approximate decoding algorithms.
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plotted against the optimised bound (for the same G) found
using 50 updates of conjugate gradients. This was repeated
over several trials of randomly chosen matrices G, each of
which are square of N = 10 dimensions. For clarity, a small
number of poor results (in which the bound is negative)
have been omitted. To generate G, form the matrix Aij ∼
N(0, 1), and B = A + AT . From the eigen-decomposition
of B, i.e BE = EΛ, form [G]ij = [EΛ]ij + 0.1N(0, 1) (so
that GT G has small off diagonal elements).

a sum of one dimensional integrals, each of which can be evaluated numerically. In
the case of an orthogonal matrix GT G = D the decoding function is optimal and
the MI bound is exact with the parameters in (12) set to

ai = −[GT G]ii/(2σ2) W = GT /σ2 bi = [GT G]ii/σ2.

Optimising the linear decoder

In the case that GT G is non-diagonal, what is the optimal linear decoder? A
partial answer is given by numerically optimising the bound from (11). For the
constrained case, WG = diag(b), (12) can be used to calculate the bound. Using
W = diag(b)G−1,

σ2wT
i wi = σ2b2

i

∑

j

([G−1]ij)
2,

and the bound depends only on a and b. Under this constraint the bound can be
numerically optimised as a function of a and b, given a fixed vector

∑

j([G
−1]ij)

2.

As an alternative we can employ the decorrelation decoder, W = G−1/σ2, with
ai = −1/(2σ2). In fig(4) we see that, according to our bound, the decorrelation or
(‘inverse’) decoder is suboptimal versus the linear decoder fi(r) = ai + wT

i r with
W = diag(b)G−1, optimised over a and b. These initial results are encouraging, and
motivate further investigations, for example, using syndrome decoding for CDMA.

6 Posterior Approximations

There is an interesting relationship between maximising the bound on the MI and
computing an optimal estimate q(s|r) of an intractable posterior p(s|r). The op-
timal bit error solution sets q(si|r) to the mean of the exact posterior marginal
p(si|r). Mean Field Theory approximates the posterior marginal by minimis-
ing the KL divergence: KL(q||p) =

∑

s
(q(s|r) log q(s|r) − q(s|r) log p(s|r)), where

q(s|r) =
∏

i q(si|r). In this case, the KL divergence is tractably computable (up to
a neglectable prefactor). However, this form of the KL divergence chooses q(si|r)
to be any one of a very large number of local modes of the posterior distribution
p(si|r). Since the optimal choice is to choose the posterior marginal mean, this is
why using Mean Field decoding is generally suboptimal. Alternatively, consider

KL(p||q) =
∑

s

(p(s|r) log p(s|r) − p(s|r) log q(s|r)) = −
∑

s

p(s|r) log q(s|r)+const.

This is the correct KL divergence in the sense that, optimally, q(si|r) = p(si|r), that
is, the posterior marginal is correctly calculated. The difficulty lies in performing



averages with respect to p(s|r), which are generally intractable. Since we will have
a distribution p(r) it is reasonable to provide an averaged objective function,

∑

r

∑

s

p(r)p(s|r) log q(s|r) =
∑

r

∑

s

p(s)p(r|s) log q(s|r). (13)

Whilst, for any given r, we cannot calculate the best posterior marginal estimate,
we may be able to calculate the best posterior marginal estimate on average. This is
precisely the case in, for example, CDMA since the average over p(r|s) is tractable,
and the resulting average over p(s) can be well approximated numerically. Wherever
an average case objective is desired is of interest to the methods suggested here.

7 Discussion

We have described a general theoretically justified approach to information maxi-
mization in noisy channels. Whilst the bound is straightforward, it appears to have
attracted little previous attention as a practical tool for MI optimisation. We have
shown how it naturally generalises linear compression and feature extraction. It is
a more direct approach to optimal coding than using the Fisher ‘Information’ in
neurobiological population encoding. Our bound enables a principled comparison of
different information maximisation algorithms, and may have applications in other
areas of machine learning and Information Theory, such as error-correction.
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