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Abstract. Mutual Information (MI) is a long studied measure of in-
formation content, and many attempts to apply it to feature extrac-
tion and stochastic coding have been made. However, in general MI is
computationally intractable to evaluate, and most previous studies re-
define the criterion in forms of approximations. Recently we described
properties of a simple lower bound on MI, and discussed its links to
some of the popular dimensionality reduction techniques. Here we in-
troduce a richer family of auxiliary variational bounds on MI, which
generalizes our previous approximations. Our specific focus then is on
applying the bound to extracting informative lower-dimensional projec-
tions in the presence of irreducible Gaussian noise. We show that our
method produces significantly tighter bounds than the well-known as-if

Gaussian approximations of MI. We also show that the auxiliary vari-
able method may help to significantly improve on reconstructions from
noisy lower-dimensional projections. Interestingly, it may be shown that
our information-theoretic approach to stochastic dimensionality reduc-
tion generalizes self-supervised training in stochastic autoencoders.

1 Introduction

One of the principal goals of dimensionality reduction is to produce a lower-
dimensional representation y of a high-dimensional source vector x, so that the
useful information contained in the source data is not lost. If it is not known a
priori which coordinates of x may be relevant for a specific task, it is sensible
to maximize the amount of information which y contains about all the coordi-
nates, for all possible x’s. The fundamental measure in this context is the mutual
information

I(x, y) ≡ H(x) − H(x|y), (1)

which indicates the decrease of uncertainty in x due to the knowledge of y.
Here H(x) ≡ −〈log p(x)〉p(x) and H(x|y) ≡ −〈log p(x|y)〉p(x,y) are marginal and
conditional entropies respectively, and the angled brackets represent averages
over all variables contained within the brackets.

The principled information theoretic approach to dimensionality reduction
maximizes (1) with respect to parameters of the encoder p(y|x). However, it is
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Fig. 1. Generative and encoder models. (a): An encoder model MI
def
= p̃(x)p(y|x)

trained by maximizing the mutual information I(x, y) (b): a generative model ML
def
=

p(y)p(x|y) trained by maximizing the log-likelihood 〈log p(x)〉p̃(x). Here p̃(x) is the em-
pirical distribution, the shaded nodes indicate the hidden representations y, and we
have assumed that the data patterns x are i.i.d.

easy to see that if the reduced dimension |y| (|y| < |x|) is still large, the exact
evaluation of I(x, y) is in general computationally intractable. The key difficulty
lies in the computation of the conditional entropy H(x|y), which is tractable only
in a few special cases. Typically, the standard techniques assume that p(x, y) is
jointly Gaussian (so that I(x, y) has a closed analytical form), or the channels
are deterministic and invertible [12], [5] (which may be related to the noiseless
square ICA case). Alternatively, it is sometimes assumed that the output spaces
are very low-dimensional, so that integration over y in the computation of I(x, y)
may be performed numerically). Unfortunately, these assumptions may be too
restrictive for many practical applications of subspace selection. Other existing
methods suggest to optimize alternative objective functions (e.g. approximations
of I(x, y) based on the Fisher Information criterion [8]), which, however, do not
retain proper bounds on I(x, y) and may often lead to numerical instabilities
when applied to learning undercomplete representations [1].

1.1 Encoder vs Generative Models

A principal motivation for applying information theoretic techniques for stochas-
tic subspace selection and dimensionality reduction is the general intuition that
the unknown compressed representations should be predictive about the higher-
dimensional data. Additionally, we note that the information-maximizing frame-
work of encoder models is particularly convenient for addressing problems of
constrained dimensionality reduction, as by parameterizing the model p(y|x) we
may easily impose specific parametric constraints on the possibly noisy pro-
jection to a lower-dimensional space (see Fig. 1 (a)). This is in contrast with



generative latent variable models (Fig. 1 (b)) commonly used for probabilis-
tic dimensionality reduction (e.g. [7], [14], [16]), where the probabilistic projec-
tion to the lower-dimensional space p(y|x) ∝ p(y)p(x|y) is a functional of the
explicitly parameterized prior p(y) and the generating conditional p(x|y). Effec-
tively, parameterizing an encoder model is analogous to specifying a conditionally
trained discriminative regressor; however, in contrast to discriminative models,
the lower-dimensional vectors y will in our case be hidden. Finally, we note that
training encoder models by optimizing the likelihood is effectively meaningless,
as the unknown representations y would marginalize out. On the other hand,
training such models by maximizing the mutual information (1) will generally
require approximations.

1.2 Linsker’s as-if Gaussian approximation

A popular class of methods suggests to approximate I(x, y) by assuming that the
joint distribution p(x)p(y|x) ≈ pG(x, y) ∼ N (µ,Σ) is a Gaussian, independently
of the exact form of p(x, y) [13]. Note that the conditional entropy H(x|y) may
in this case be approximated by

HG(x|y)
def
= −〈log pG(x|y)〉pG(x,y) = (1/2) log(2πe)|x||Σx|y|, (2)

where Σx|y is the covariance of the decoder pG(x|y) expressed from pG(x, y) ∼

N (µ,Σ). If the joint covariance is expressed as Σ
def
= 〈[x y][x y]T 〉p(y|x)p̃(x) −

〈[x y]〉p(y|x)p̃(x)〈[x y]T 〉p(y|x)p̃(x), it is easy to obtain the as-if Gaussian approxima-
tion of I(x, y):

IG(x, y) ∝ log |Σxx| − log |Σxx − ΣxyΣ−1
yy ΣT

xy|. (3)

Here Σxx, Σxy, and Σyy are the partitions of Σ, and p̃(x) is the empirical dis-
tribution. Objective (3) is to be maximized with respect to parameters of the
encoder distribution p(y|x). After training, the encoder may be used for generat-
ing lower-dimensional representations y for a given source x. Inference is simpler
than that in generative models and does not require additional evaluations.

2 A Simple Variational Lower Bound on I(x, y)

In [4] we discussed properties of a simple variational lower bound on the mutual
information I(x, y). The bound follows from non-negativity of the Kullback-
Leibler divergence KL(p(x|y)||q(x|y)) between the exact posterior p(x|y) and its
variational approximation q(x|y), leading to

I(x, y) ≥ Ĩ(x, y)
def
= H(x) + 〈log q(x|y)〉p(x,y), (4)

where q(x|y) is an arbitrary distribution. Clearly, the bound is saturated for
q(x|y) ≡ p(x|y); however, in general this choice would lead to intractability of
learning the optimal encoder p(y|x).



Objective (4) explicitly includes both the encoder p(y|x) (distribution of the
lower-dimensional representations for a given source) and decoder q(x|y) (recon-
struction of the source from a given compressed representation). It is iteratively
optimized for parameters of both distributions (the IM algorithm [4]), which is
qualitatively similar to the variational expectation-maximizing algorithm for in-
tractable generative models. (Note, however, that optimization surfaces defined
by the objectives of the IM and the variational EM are quite different). The flex-
ibility in the choice of the decoder q(x|y) makes (4) particularly computationally
convenient. Specifically, we may avoid most of the computational difficulties of
optimizing I(x, y) by constraining q(x|y) to lie in a tractable family. Note that
the fundamental difference of optimizing the variational bound (4) from the
well-known family of Blahut-Arimoto algorithms for channel capacity (e.g. [10])
is exactly the fact that the variational decoder distribution q(x|y) is constrained
to be tractable. For example, q(x|y) may be chosen to have a simple parametric
form or a sparse structure. Such constraints significantly facilitate optimization
of channel capacity for non-trivial stochastic projections3.

It is easy to show that by constraining the decoder as q(x|y) ∼ N (Uy,Σ),
optimization of the bound (4) reduces to maximization of Linsker’s as-if Gaus-

sian criterion (3). Therefore, maximization of IG may be seen as a special
case of the variational information-maximization approach for the case when
the decoder q(x|y) is a linear Gaussian. Moreover, if for this case p(y|x) ∼
N

(

W(x − 〈x〉p̃(x)), s
2I

)

, it is easy to show that the left singular vectors of the
optimal projection weights WT correspond to the |y|-PCA solution on the sam-
ple covariance 〈xxT 〉p̃(x) − 〈x〉p̃(x)〈x〉

T
p̃(x).

3 An Auxiliary Variational Bound

A principal conceptual difficulty of applying the bound (4) is in specifying a pow-
erful yet tractable variational decoder q(x|y). Specifically, for isotropic Gaussian
channels, the linear Gaussian decoders mentioned above are fundamentally lim-
ited to producing PCA projections. Here we describe a richer family of bounds
on I(x, y) which helps to overcome this limitation.

From (4) it is intuitive that we may obtain tighter bounds on I(x, y) by
increasing representational power of the variational distributions q(x|y). One
way to achieve this is to consider multi-modal decoders q(x|y) = 〈q(x|y, z)〉q(z|y),
where the introduced auxiliary variables z are effectively the unknown mixture
states. Effectively, this choice of the variational decoder has a structure of a
constrained multi-dimensional mixture-of-experts [11] model of a conditional
distribution. Clearly, the fully-coupled structure of the resulting variational dis-
tribution q(x|y) qualitatively agrees with the structure of the exact posterior, as

3 Standard iterative approaches to maximizing I(x, y) in encoder models require op-
timization of the cross-entropy 〈log p(old)(y)〉p(y) between two fully-coupled distri-

butions p(y) and p(old)(y) for p(y|x) (see [3], [6], [10]), which is rarely tractable in
practice.



Fig. 2. A stochastic channel p(y|x) with a structured mixture-type decoder q(x|y). (The
states of the reconstructed variables are denoted by x̃). The auxiliary variables z are
not transmitted across the channel p(y|x) and do not explicitly constrain p(x, y). The
dashed lines show the mappings to and from the auxiliary space. The auxiliary nodes
are shown by the double circle.

different dimensions of the reconstructed vectors x are coupled through the aux-
iliary variables z. Moreover, for any interesting choice of the auxiliary space {z},
the decoder q(x|y) will typically be multi-modal, which agrees with the gener-
ally multi-modal form of Bayesian decoders p(x|y). We may therefore intuitively
hope that this choice of the variational posterior will generally result in tighter
bounds on I(x, y).

A possible disadvantage of mixture decoders q(x|y) relates to the fact that
specifying the conditional mixing coefficients q(z|y) in a principled manner may
be rather difficult. Moreover, if the auxiliary variables z are independent from the
original source patterns x given the lower-dimensional encodings y, any noise in
y will affect determining of the mixing states. Intuitively, this may have an over-
whelming negative effect on decoding, causing relaxations in the bound on I(x, y).
We may therefore wish to reduce the effects which the noise of the stochastic pro-
jection p(y|x) has on the specification of the decoder q(x|y). One way to address
this matter is by introducing an additional mapping p(z|x, y) to the auxiliary
variable space, which may be thought of as an additional variational parameter
(see Fig. 2). Indeed, even when the channel is noisy, the conditional dependence
of the auxiliary variables z on the unperturbed source patterns could result in
an accurate detection of the states of the auxiliary variables. Note that the aux-

iliary conditional distribution p(z|x, y) is defined in a way that does not affect
the original noisy channel p(y|x), as the channel would remain a marginal of the
joint distribution of the original sources, codes, and auxiliary variables

p(x, y, z) = p̃(x)p(y|x)p(z|x, y). (5)



The role of the auxiliary variables z in this context would be to capture global
features of the transmitted sources, and use these features for choosing optimal
experts for the decoder. Importantly, the auxiliary variables z are not transmitted
across the channel. Their purpose here is to define a richer family of bounds
on I(x, y) which would generalize over objectives with simple constraints on
variational decoders (such as linear Gaussians).

From the definition (5) and the chain rule for mutual information (e.g. [10]),
we may express I(y, x) as

I(y, x) = I({z, y}, x) − I(x, z|y), (6)

where I({z, y}, x)
def
= H(x) − H(x|z, y) is the amount of information that the

features z and codes y jointly contain about the sources, and I(x, z|y)
def
= H(z|y)−

H(z|x, y) is the conditional mutual information. Substituting the definitions into
(6), we obtain a general expression of the mutual information I(x, y) as a function
of conditional entropies of the sources, codes, and auxiliary variables

I(y, x) = H(x) + H(z|x, y) − H(x|y, z) − H(z|y). (7)

Then by analogy with (4) we obtain

I(y, x) ≥ H(x) + H(z|x, y) + 〈log q(x|y, z)〉p(x,y,z) + 〈log q(z|y)〉p(y,z). (8)

Symbolically, (8) has a form vaguely reminiscent of the objectives optimized by
Information Bottleneck (IB) methods [15]. However, the similarity is deceptive
both conceptually and analytically, which is easy to see by comparing the ob-
jectives and the extrema. Additionally, we note that the auxiliary variational
method is applicable to significantly more complex channels, provided that the
variational distributions are appropriately constrained.

The mapping p(z|x, y) to the feature space may be constrained so that the
averages in (8) are tractable, e.g.

p(zj |x, y) = p(zj |x) ∝ exp{−(vT
j x + bj)}, (9)

where zj is the jth state of a multinomial variable z. Analogously, we may con-
strain the variational decoders q(x|y, z) and q(z|y). In a specific case of a linear
Gaussian channel p(y|x) ∼ N (Wx, s2I), we may assume q(x, z|y) ∝ q(x|y, z)q(z)
with q(x|y, zj) ∼ N (Ujy,Sj). Then objective (8) is optimized for the channel en-
coder, variational decoder, and the auxiliary conditional distributions, which is
tractable for the considered parameterization. Effectively, we will still be learning
a noisy linear projection, but for a different (mixture-type) variational decoder.

3.1 Learning Representations in the Augmented {y, z}-space

Now suppose that the multinomial auxiliary variable z is actually observable
at the receiver’s end of the channel. Under this assumption, we may consider
optimizing an alternative bound ĨH(x, {y, z}) ≥ I(x, y), defined by analogy with



(4). (We will use the notation IH to indicate that the channel x → {y, z} is
generally heterogeneous; for example, z may be a generally unknown class label,
while y ∈ R

|y| may define a lower-dimensional projection). This leads to a slight
simplification of (8), which effectively reduces to

ĨH(x, {y, z}) = H(x) + 〈log q(x|y, z)〉p̃(x)p(y|x)p(z|x), (10)

where the cross-entropic term is given by

〈log q(x|y, z)〉p(x,y,z) = −
1

2M

|z|
∑

j=1

M
∑

i=1

p(zj |x
(i))tr

{

S−1
j

(

d
(i)
j d

(i)T
j + s2UjU

T
j

)}

−
1

2M

|z|
∑

j=1

log |Sj |
M
∑

i=1

p(zj |x
(i)). (11)

Here we ignored the irrelevant constants and defined

d
(i)
j

def
= x(i) − UjWx(i) ∈ R

|x| (12)

to be the distortion between the ith pattern and its reconstruction from a noise-
less code at the mean of q(x|y, zj). From (10) and (12) it is easy to see that

small values of the distortion terms d
(i)
j lead to improvements in the bound on

I(x, {y, z}), which agrees with the intuition that the trained model should favour
accurate reconstructions of the source patterns from their compressed represen-
tations.

Note that in the communication-theoretic interpretation of the considered
heterogeneous channel, the auxiliary variables z will need to be communicated
over the channel (cf bound (8)). Generally, this comes at a small increase in the
communication cost, which in this case is ∼ O(|z|). For the model parameter-
ization considered here, this corresponds to sending (or storing) an additional
positive integer z, which would effectively index the decoder used at the recon-
struction. Generally, the lower-dimensional representations of {x} will include
not only the codes {y}, but also the auxiliary labels z. Finally, we may note that
unless p(z|x) is strongly constrained, the mapping x → z will typically tend to
be nearly noiseless, as this would decrease H(z|x) and maximize I(x, {y, z}).

4 Demonstrations

Here we demonstrate a few applications of the method to extracting optimal
subspaces for the digits dataset. In all cases, it was assumed that |y| < |x|. We
also assumed that p(x) is the empirical distribution.

4.1 Hand-Written Digits: Comparing the Bounds

In the first set of experiments, we compared optimal lower bounds on the mu-
tual information I(x, y) obtained by maximizing the as-if Gaussian IG(x, y) and
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Fig. 3. Variational information maximization for noisy constrained dimensionality re-
duction. (a): Top curves: Average values of the variational auxiliary bounds Ĩ(x, y),
obtained by the IM algorithm started at 10 random model initializations (shown for
|z| = 2, . . . , 5); bottom line: the as-if Gaussian IG(x, y) bound (computed numerically).
The results are shown for the digits data with |x| = 196, |y| = 6 for M = 30 patterns
and T = 30 iterations of the IM. (b): Hinton diagram for WWT

pca(WWT
pca)T ∈ R

6×6

for |z| = 3, T = 30. For orthonormal weights spanning identical subspaces, we would
expect to see the identity matrix.

the auxiliary variational Ĩ(x, y) objectives for hand-written digits. The dataset
contained M = 30 gray-scaled instances of 14-by-14 digits 1, 2, and 8 (10 of
each class), which were centered and normalized. The goal was to find a noisy
projection of the |x| = 196-dimensional training data into a |y| = 6-dimensional
space, so that the bounds IG(x, y) and Ĩ(x, y) were maximized. We considered
a linear Gaussian channel with an irreducible white noise, which in this case
leads to the encoder distribution p(y|x) ∼ Ny

(

Wy, s2I
)

with W ∈ R
6×196. Our

specific interest was in finding optimal orthonormal projections, so the weights
were normalized to satisfy WWT = I|y| (by considering the parameterization

W = (W̃W̃T )−1/2W̃ with W̃ ∈ R
|y|×|x|). Effectively, this case corresponds to

finding the most informative compressed representations of the source vectors
for improving communication of the non-Gaussian data over a noisy Gaussian
channel (by maximizing lower bounds on the channel capacity). Our specific
interest here was to find whether we may indeed improve on Linsker’s as-if
Gaussian bound on the mutual information (with the optima given in this case
by the PCA projection) by considering a richer family of auxiliary variational
bounds with multi-modal mixture-type decoders.

Figure 3 shows typical changes in the auxiliary variational bound Ĩ(x, y) as a
function of the IM’s iterations T for |z| ∈ {2, . . . , 5} states of the discrete auxil-
iary variable. (On the plot, we ignored the irrelevant constants H(x) identical for
both Ĩ(x, y) and IG(x, y), and interpolated Ĩ(x, y) for the consecutive iterations).



The mappings were parameterized as described in Section 3, with the random
initializations of the parameters vj and bj around zero, and the initial settings
of the variational prior q(z) = 1/|z|. The encoder weights W were initialized at 6
normalized principal components Wpca ∈ R

6×196 of the sample covariance 〈xxT 〉,
and the variance of the channel noise was fixed at s2 = 1. For each choice of
the auxiliary space dimension |z|, Figure 3 (a) shows the results averaged over
30 random initializations of the IM algorithm. As we see from the plot, the IM
learning leads to a consistent improvement in the auxiliary variational bound,
which (on average) varies from Ĩ0(x, y) ≈ 745.7 to ĨT (x, y) ≈ 822.2 at T = 30 for
|z| = 5. Small variances in the obtained bounds (σT ≈ 2.6 for T = 30, |z| = 5)
indicate a stable increase in the information content independently of the model
initializations. From Figure 3 (a) we can also observe a consistent improvement
in the average Ĩ(x, y) with |z|, changing as Ĩ10(x, y) ≈ 793.9, ≈ 806.3, ≈ 811.2,
and ≈ 812.9 for |z| = 2, . . . , 5 after T = 10 IM’s iterations. In comparison, the
PCA projection weights Wpca result in IG(x, y) ≈ 749.0, which is visibly worse
than the auxiliary bound with the optimized parameters, and is just a little bet-
ter than Ĩ(x, y) computed at a random initialization of the variational decoder
for |z| ≥ 2.

Importantly, we stress once again that the auxiliary variables z are not passed
through the channel. In the specific case which we considered here, the auxil-
iary variables were used to define a more powerful family of variational bounds
which we used to extract the Ĩ-optimal orthonormal subspace. The results are
encouraging, as they show that for a specific constrained channel distribution
we may indeed obtain more accurate lower bounds on the mutual information
I(x, y) without communicating more data than in the conventional case. Specifi-
cally, for Gaussian channels with orthonormal projections to the code space, we
do improve on simple as-if Gaussian solutions (leading to the PCA projections)
by considering optimization of the auxiliary variational bounds (8).

As expected, we may also note that the Ĩ-optimal encoder weights W are
in general different from rotations of Wpca. This is easy to see by computing
WWT

pca(WWT
pca)T , which in our case is visibly different from the identity matrix

(see Fig. 3 (b) for |y| = 6 and |z| = 3), which we would have expected to obtain
otherwise. This indicates the intuitive result that by allowing a greater flexibility
in the choice of the variational decoder distributions, the Ĩ(x, y)-optimal con-
strained encoders become different from the optimal encoders of simpler models
(such as PCA under the linear Gaussian assumption).

4.2 Hand-Written Digits: Reconstructions

Additionally, for the problem settings described in Sec. 4.1, we have computed
reconstructions of the source patterns {x} from their noisy encoded representa-
tions. First, we generated source vectors by adding an isotropic Gaussian noise
to the generic patterns (see Fig. 4 (a)), where the variance of the source noise
was set as s2

s = 0.5. Then we computed noisy linear projections {y} of the source
vectors by using the IG- and the ĨH - optimal encoder weights (in the latter case,
we also computed the auxiliary label z by sampling from the learned p(z|x)).
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Fig. 4. Reconstructions of the source patterns from encoded representations. (a): A
subset of the generic patterns used to generate the source vectors; (b): the correspond-
ing reconstructions from 6 principal components; (c): the corresponding ĨH -optimal re-
constructions at 〈x〉q(x|y,z) = Uzy for the hybrid {y, z} representations (|y| = 6, |z| = 3).

This stage corresponds to passing encoded representations over the noisy chan-
nels, where the noise variance for the Gaussian part of the channel was fixed
at s2 = 1. Finally, we have used the optimal approximate decoders to perform
the reconstructions from {y} (for IG-optimal PCA projections) and {y, z} (for
ĨH -optimal hybrid channels).

As we see from Figure 4 (b), (c), by a slight modification of the channel (due
to encoding and communicating a multinomial variable z), we may achieve a vis-
ible improvement in the reconstruction of the sources by using the ĨH - optimal
projections4. The results are shown for |y| = 6, |z| = 3 after T = 3 iterations, and
the reconstructions are computed at the analytical mean of the decoder’s com-
ponent q(x|y, z) indexed by the auxiliary variable z. Even though the resulting
hybrid channel may be difficult to justify from the communication viewpoint,
the results suggest that maximization of the bound on I(x, {y, z}) provides a
sensible way to reduce dimensionality of the sources for the purpose of recon-
structing inherently noisy non-Gaussian patterns. Importantly, the variational
decoder q(z|x, y) which maximizes ĨH(x, {y, z}) makes no recourse to p̃(x). There-
fore, just like in the PCA case, we do not need to store the training instances
in order to perform an accurate reconstruction from noisy lower-dimensional
projections. We note once again that the weights of the optimal encoder were
chosen to satisfy the specific orthonormality constraint (though other kinds of
constrained encoders may easily be considered). This contrasts with the exact
approaches to training generative models, where encoding constraints may be
more difficult to enforce.

4 Similar reconstructions could be obtained by maximizing the auxiliary bound Ĩ(x, y)
without communicating z. However, the approximate decoder for this case would be

given as q(x|y) =
∑

z
q(x|y, z)

〈p(z|x)p(y|x)〉p(x)

〈p(z|x)〉p(x)
, which requires knowing p(x).



5 Summary

Here we described an auxiliary variational approach to information maximiza-
tion, and applied it to linear orthonormal dimensionality reduction in the pres-
ence of irreducible Gaussian noise. For this case we showed that the common
as-if Gaussian [13] approximation of MI is in fact a suboptimal special case of
our variational bound, which for isotropic linear Gaussian channels leads to the
PCA solution. Importantly, this means that by using linear Gaussian variational
decoders under the considered Gaussian channel, maximization of the generic
lower bound (4) on MI cannot improve on the PCA projections. The situation
changes if we consider a richer family of variational auxiliary lower bounds on
I(x, y) under the same encoding constraints. In particular, we showed that in the
cases when the source distribution was non-Gaussian, we could significantly im-
prove on the PCA projections by considering multi-modal variational decoders.
This confirms the conceptually simple idea that by allowing a greater flexibility
in the choice of variational decoders, we may get significant improvements over
simple bounds at a limited increase in the computational cost. This result is also
interesting from the communication-theoretic perspective, as it demonstrates a
simple and computationally efficient way to produce better bounds on the capac-
ity of communication channels without altering channel properties (e.g. without
communicating more data across the channels). Finally, we discussed a simple
information-theoretic approach to constrained dimensionality reduction for hy-
brid representations x → {y, z}, which may significantly improve reconstructions
of the sources {x} from their lower-dimensional representations {y} at a small
increase in the transmission cost (given by |z|).

It is potentially interesting to compare the variational information-maximizing
framework with other approaches applicable to learning unknown under-complete
representations of the data (such as generative models5 and autoencoders). As
we pointed out, there are important conceptual differences in the way we pa-
rameterize and train encoder and generative models. Specifically, by imposing
explicit constraint on the mapping to the space of representations, our method
is applicable for constrained stochastic dimensionality reduction. This may be
particularly useful in engineering and neural systems, where such constraints
may be physically or biologically motivated. Despite the important differences,
it is interesting to note that the special case of the auxiliary variational bound
on I(x, y) for a Gaussian channel and a multinomial auxiliary space {z} has an
interesting link to likelihood maximization for a mixture of factor-analysis-type
models with the uniform, rather than Gaussian, factor distribution [2] (cf [14]).

It is also interesting to compare our framework with self-supervised train-
ing in semi-parametric models. The most common application of self-supervised
models is dimensionality reduction in autoencoders x → y → x̃, where x(m) =
x̃(m) for all patterns m. Typically, it is presumed that y = f(x), and the models are

5 It is well known that in a few special cases (e.g. for square ICA models) mutual
information- and likelihood-maximization may lead to the same extrema [9]. How-
ever, little is understood about how the frameworks may relate in general.



trained by minimizing a loss function (such as the squared loss). It is clear that
for noiseless encoders, our bound (4) gives const +

∑

m log q
(

x(m)|y = f(x(m))
)

,
which has the interpretation of an autoencoder whose loss function is determined
by q. Thus a squared loss function can be interpreted as an assumption that the
data x can be reconstructed from noiseless codes y with Gaussian fluctuations.
However, in some sense, the natural loss function (from the MI viewpoint) would
not be the squared loss, but that which corresponds to the Bayesian decoder
q(x|y) = p(x|y), and more powerful models should strive to approximate this.
Indeed, this is also the role of the auxiliary variables – effectively to make a loss
function which is closer to the Bayes optimum. What is also interesting about
our framework is that it holds in the case that the codes are stochastic, for which
the autoencoder framework is more clumsy. Indeed, it also works when we have
a (non-delta mixture) distribution p(x), i.e. the method merges many interesting
models in one framework.
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