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Abstract

Recently, we introduced a simple variational bound on mutual information, that resolves some
of the difficulties in the application of information theory to machine learning. Here we study a
specific application to Gaussian channels. It is well known that PCA may be viewed as the solution
to maximizing information transmission between a high dimensional vector x and its low dimensional
representation y. However, such results are based on assumptions of Gaussianity of the sources x.
In this paper, we show how our mutual information bound, when applied to this arena, gives PCA
solutions, without the need for the Gaussian assumption. Furthermore, it naturally generalizes to
providing an objective function for Kernel PCA, enabling the principled selection of kernel parameters.

1 Introduction

Maximization of information transmission in noisy channels is a common problem, ranging from the
construction of good error-correcting codes [12] and feature extraction [17] to neural sensory processing
[11], [6].

The key idea of information maximization is to choose a mapping from source variables (inputs) x to
response variables (outputs) y such that the outputs contain as much information about which of the
inputs was transmitted as possible. In a stochastic context, we have a source distribution p(x), and a
mapping p(y|x). The general aim will be to set any adjustable parameters of p(y|x) in order to maxi-
mize information transfer. The principal measure of information transfer in this context is the mutual
information defined as

I(x, y) ≡ H(x)−H(x|y). (1)

Equivalently, we may write I(x, y) ≡ H(y) − H(y|x). Here H(y) ≡ −〈log p(y)〉p(y) and H(y|x) ≡
−〈log p(y|x)〉p(x,y) are marginal and conditional entropies respectively, and angled brackets represent av-
erages. The objective (1) is maximized with respect to parameters of the encoder p(y|x).

Our specific interest in this paper is when we have a finite set of training points {xm|m = 1, . . . ,M},

which forms the empirical distribution p(x) = (1/M)
∑M

m=1 δ(x−xm). Our aim will be to form constrained
representations p(y|x) that maximize I(x, y). For a continuous encoder p(y|x), the theoretically optimal
unconstrained decoder is given by Bayes’ rule:

p(x|y) =
M∑

k=1

δ(x− xk)ωk(y), ωk(y) =
p(y|xk)

∑M
m=1 p(y|xm)

,

which is a mixture of Dirac delta functions. This reduces to a single delta peak only for the case when
stochastic images I of distinct source vectors {x} are non-intersecting under the encoder p(y|x), i.e.
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∀i, j ∈ {1, . . . ,M}.i 6= j.I(xi)∩ I(xj) =ø. Formally, this is never the case if ∀y.∀x.p(y|x) 6= 0, which leads
to a mixture form of p(x|y).

Despite the conceptual simplicity of the statement, computation of the mutual information is generally
intractable for all but special cases. For large-scale systems the key difficulty lies in the computation of
the conditional entropy H(x|y) of the mixture distribution p(x|y), which is in general NP hard.

Standard approaches address the problem of optimizing (1) by assuming that p(x, y) is jointly Gaussian
[10], the output spaces are very low-dimensional [11], or the channels are deterministic and invertible [2].
Other popular methods suggest alternative objective functions (e.g. the Fisher information criterion [4]),
which, however, do not preserve proper bounds on I(x, y).

1.1 Variational Lower Bound on Mutual Information

In order to derive a simple lower bound on the mutual information, we consider the Kullback-Leibler
divergence KL(p(x|y)||q(x|y)) between the posterior p(x|y) and its variational approximation q(x|y). Non-
negativity of the divergence gives

〈log p(x|y)〉p(x|y) − 〈log q(x|y)〉p(x|y) ≥ 0 ⇒ 〈log p(x|y)〉p(x|y)p(y)
︸ ︷︷ ︸

−H(x|y)

≥ 〈log q(x|y)〉p(x|y)p(y) . (2)

This leads to

I(x, y) ≥ H(x) + 〈log q(x|y)〉p(x,y)
def
= Ĩ(x, y), (3)

where q(x|y) is an arbitrary variational distribution which saturates the bound for q(x|y) ≡ p(x|y). Note
that the objective (3) explicitly includes both the encoder p(y|x) and decoder q(x|y).

Other well known lower bounds on the mutual information could be considered [7]. However, our current
experience suggests that for certain choices of the decoder q(x|y) the variational bound considered above is
particularly computationally convenient. Moreover, since (3) is based on the KL divergence between the
true and the approximating posteriors, it is equivalent to a moment matching approximation of p(x|y)
by q(x|y). This fact is beneficial in terms of decoding, since the more successful decoding algorithms
approximate the mean of the posterior p(x|y) [13], whilst standard mode matching approaches (such as
mean-field theory) typically get trapped in the one of many sub-optimal local minima.

Recently in [1] we discussed several applications of the bound (3) and outlined its basic properties. The
principal objective of this paper is to investigate properties of the bound for the case when the decoder
q(x|y) is Gaussian. We will also assume that the encoder p(y|x) is Gaussian, although this assumption is
less critical to the tractable optimization of the objective.

1.2 Gaussian Decoders

In this paper we focus on a simple assumption that the approximate decoder q(x|y) is a Gaussian.
Although the optimal decoder in the considered channels should be a mixture distribution q(x|y) = p(x|y),
one may hope that Gaussian decoders q(x|y) perform well if the codes are not strongly overlapping.
We show that optimal Gaussian decoders have a strong relation to popular dimensionality reduction
techniques, inducing PCA and kernel PCA solutions as special cases.

In the following sections we will consider increasingly complex encoders and decoders. Initially, however,
we demonstrate the application of the bound to the simple case of a linear Gaussian encoder and decoder.
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2 Linear Gaussian Decoder: p(y|x) ∼ Ny(Wx, s2I), q(x|y) ∼ Nx(Uy, σ2I)

Let the encoder and decoder be given by p(y|x) ∼ Ny(Wx, s2I) and q(x|y) ∼ Nx(Uy, σ
2I) respectively. Our

goal is to learn optimal settings of W ∈ R
|y|×|x| and U ∈ R

|x|×|y| (for fixed σ2 and s2) by maximizing the
variational bound Ĩ(x, y) on the mutual information, which in this case is expressed as

Ĩ(x, y) ∝ 2tr {UWS} − tr
{
UΣUT

}
+ c. (4)

Here c is a constant, S = 〈xxT 〉 =
∑

m xm(xm)T /M is the sample covariance of the zero-mean data, and

Σ = Is2 +WSWT ∈ R
|y|×|y| (5)

is the covariance of the distribution of the responses p(y). In the following we assume that the weights W,
U and the sample covariance S are non-singular. Note that we make no assumptions about the distribution
of the sources p(x). Unsurprisingly, this objective is closely related to the least squares reconstruction
error in a linear autoencoder. What is particularly interesting in this context is that it provides a lower
bound on the mutual information.

Nature of optimal solutions

Unconstrained optimization of (4) for the encoder’s weights W leads to the extremum condition

UTS = UTUWS. (6)

By assuming that y is a compressed representation of the source x (i.e. |x| > |y|), we obtain W =
(UTU)−1UT . This transforms the objective function (4) into

Ĩ(x, y) = tr
{
UWSWTUT

}
− s2tr

{
UUT

}
= tr

{
U(UTU)−1UTS

}
− s2tr

{
UUT

}
, (7)

where we ignored the irrelevant constant c.

Let U = VLRT be the singular value decomposition of the decoder weights U where, by definition,
L ∈ R

|y|×|y| is diagonal and VTV = RTR = RRT = I|y|. From (6) it is clear that W = RL−1VT , i.e.
WU = I|y|. Substitution into (7) results in

Ĩ(x, y) = tr
{
VTSV

}
− s2tr

{
L2
}
. (8)

Optimizing (8) for V under the orthonormality constraints on V, we readily obtain the PCA solution
(and its rigid rotations). In the limit s2 → 0, the solutions are invariant with respect to the scalings L.

For noisy channels s2 > 0, maximization of (8) leads to divergence of the Frobenius norm ‖W‖F , so
that the contribution of the finite isotropic noise in (5) is negligible. One way to handle the problem of
divergence for s2 > 0 is by constraining the singular values of U. In this case optimal weights U correspond
to principal eigenvectors of S. Note that solutions are invariant with respect to complimentary rotations
of W and U.

This demonstrates the simple result that PCA provides a lower bound on the mutual information between
x and y. Again, we stress that this conclusion is reached without the need for a Gaussian assumption
about the source distribution. In order to go beyond the PCA solution, more complex encoders/decoders
are required. In the following section we consider the effect of increasing the complexity of the encoder,
whilst still using a simple linear decoder as above.

3 Nonlinear Gaussian Channels: p(y|x) ∼ Ny(Wφ(x),Σy), q(x|y) ∼ Nx(Uy,Σx)

Here we consider the case of a non-linear Gaussian channel with the encoder p(y|x) ∼ Ny(Wφ(x),Σy) and
decoder q(x|y) ∼ Nx(Uy,Σx). Note that for all the data points {xm|m = 1, . . . ,M}, the set of encodings
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{ym} is given by a noisy linear projection from the (potentially high-dimensional) feature space {φ(xm)}.
In what follows we assume that |φ| > M , i.e. dimensionality of the feature space exceeds the number of
training points.

It is easy to see that for the considered case the lower bound on the mutual information I(x, y) is given
by

Ĩ(x, y) = −
1

2
tr
{
Σ−1
x S

}
+ tr

{
Σ−1
x UW〈φ(x)xT 〉

}
−

1

2
tr
{
UTΣ−1

x U
(
Σy +W〈φ(x)φ(x)T 〉WT

)}

where S = 〈xxT 〉 =
∑

m xm(xm)T /M is the sample covariance of the zero-mean data, and the averages

are computed with respect to the empirical distribution p(x) = (1/M)
∑M

m=1 δ(x − xm). Note, however,
that for high-dimensional feature spaces direct evaluation of the averages is implausible. It is therefore
desirable to avoid explicit computations in {φ}.

3.1 Kernelized Representation

Since each row w̃Ti ∈ R
1×|φ| of the weight matrix W ∈ R

|y|×|φ| has the same dimensionality as the feature
vectors φ(xi)

T , it is representable as

w̃i =

M∑

m=1

αimφ(xm) + w̃⊥i , (9)

where w̃⊥i is orthogonal to the span of φ(x1), . . . , φ(xM ). Then

W = AFT +W⊥, F
def
= [φ(x1), . . . , φ(xM )] ∈ R

|φ|×M , (10)

where A = {αij} ∈ R
|y|×M is the matrix of coefficients, and the transposed rows of W⊥ are given by w̃⊥i .

In kernel literature F is often referred to as the design matrix (e.g. [18]).

From (10), we obtain expressions for the averages

W〈φ(x)xT 〉 = A
〈[
φ(x1)

Tφ(x), . . . ,φ(xM )Tφ(x)
]T

xT
〉

=
A

M

[
∑

m

xmφ(xm)Tφ(x1), . . .

]T

=
ABT

M

where we defined

B
def
=

M∑

m=1

xmk(xm)T ∈ R
|x|×M , k(xm) = FTφ(xm) ∈ R

M . (11)

Here k(xm) corresponds to the mth column (or row) of the Gram matrix K = {Kij}
def
= {φ(xi)

Tφ(xj)} ∈
R
M×M . Finally, note that for a fixed K the computed expectation W〈φ(x)xT 〉 is a function of A.

Analogously, we can express

W〈φ(x)φ(x)T 〉WT =
1

M
A

M∑

m=1

k(xm)k(xm)TAT . (12)

Again, for the fixed Gram matrix the term is a quadratic function of coefficients A alone.

By substitution, we may re-express the bound (9) as

Ĩ(x, y) =
1

M
tr
{
Σ−1
x UABT

}
−

1

2
tr
{
UTΣ−1

x UΣy

}
−

1

2M
tr
{
UTΣ−1

x UAK2AT
}
−

1

2
tr
{
Σ−1
x S

}
. (13)
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In the simplest case when φ(x) ≡ x ∈ R
|x|, we obtain K2 ∝ XTSX ∈ R

M×M , B ∝ SX ∈ R
|x|×M where

X
def
= [x1, . . . , xM ] ∈ R

|x|×M contains the training data. As expected, this transforms the bound (13) to
the corresponding expression (7) for the linear Gaussian channel, thus resulting in PCA on the sample
covariance S for both the encoder WT and the decoder U as the optimal choice.

The objective (13) may be used to learn optimal decoder weights U and optimal coordinates A in the space
spanned by the feature vectors {φ(xi)|i ∈ [1,M ] ∩ N}. Moreover, note that if KΘ : |x| × |x| → R defines
a symmetric positive-definite kernel, by Mercer’s theorem the elements Kij of the Gram matrix may be

replaced by K(xi, xj ;Θ). In this case, the bound Ĩ(x, y) may be used to learn the optimal parameters1

of the kernel function. Thus, in our framework the procedure for learning kernels may be viewed as a
special case of the variational IM algorithm [1].

3.2 Nature of optimal solutions

In the following we assume for simplicity that Σy = s2I and Σx = σ2I. We also assume that |y| ≤ |x| ≤ |φ|
and |x| ≤ M , so that y is a compressed representation of φ(x), and the number of training points is
sufficient to ensure invertibility of the sample covariance.

Optimal Decoder

Optimization of Ĩ(x, y) for the matrix of coefficients A leads to the fixed point condition

∂Ĩ(x, y)/∂A = 0 ⇒ UTΣ−1
x B = UTΣ−1

x UAK2. (14)

For a non-singular Gram matrix K we obtain

Ĩ(x, y) ∝ tr
{
UAK2ATUT

}
− s2tr

{
UUT

}
= tr

{
U(UTU)−1UTBK−2BT

}
− s2tr

{
UUT

}
. (15)

Let S̃F =
∑M

m=1 xmφ(xm)T /M ∈ R
|x|×|φ|. By noticing that

BK−2BT ∝ S̃FFK
−2FT S̃TF ∝ S, (16)

the bound (15) reduces to the objective of the linear Gaussian channel (6). Note that ‖W‖F → ∞ as
‖U‖F → 0.

Thus, under the specific assumption of isotropic Gaussian noise, optimal weights U of the linear Gaussian
decoder correspond to principal components (and their rotations) of the sample covariance S. Similarly
to the case of a linear channel, for s2 > 0 it is necessary to impose norm constraints on U to ensure
convergence of ‖W‖F . Fundamentally, therefore, this simple decoder will restrict severely the power of
the approach, as we will see below.

Optimal Encoder

From (14) it is clear that optimal solutions for the encoder are given by

WF = AK ∝ U+X, (17)

where U+ denotes the pseudo-inverse, and left singular values of U correspond to principal eigenvectors of
S. In the case when φ(x) ≡ x ∈ R

|x| and XXT is non-singular, condition (17) results in W = U+ ∈ R
|y|×|x|,

1It is also possible to learn K directly by constraining it to satisfy properties of inner products; this may be useful, for
example, when the source alphabet is exhausted by M training points.
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which is the PCA solution of the linear Gaussian channel. However, for general non-linear mappings,
optimal encoder weights WT do not necessarily give rise to the non-linear PCA solution.

Finally, note that if the channel noise is isotropic and there are no constraints preventing the weights
from taking optimal solutions according to (15) and (17), then the bound is given by the summation
of |y| principal eigenvalues of the sample covariance S. In this case the objective is invariant under the
choice of non-linearity. Hence, we reach an important conclusion: for isotropic channel noise, if the
decoder is linear, nothing is gained by using a non-linear encoder in the proposed variational settings. In
other cases, for example when the channel noise is correlated or the encoder and decoder weights have
structural constraints, optimal parameters of KΘ may be obtained by maximizing (13).

These results are somewhat disappointing. In order to improve the power of the method, we need to
consider both non-linear encoders and decoders. However, the naive method of using a non-linear decoder
would typically result in intractable averages over y. In order to avoid this difficulty, we consider how to
form decoding in the feature space.

4 Nonlinear Decoders and KPCA

The non-linear Gaussian channel discussed in Section 3 may be represented by the Markov chain x→ f →
y, where f ∈ R

|φ| and p(f|x) ∼ δ(f − φ(x)), p(y|f) ∼ Ny(Wf,Σy). Indeed, by marginalizing the feature
variables f it is clear that the encoder is given2 by p(y|x) =

∫

f
δ(f − φ(x))Ny(Wf,Σy) = Ny(Wφ(x),Σy).

Proposition 1: Let s → t → r define a Markov chain, such that p(t|s) = δ(t − f(s)), and p(r|t) is a
continuous differentiable density function satisfying ∀r.∀t.p(r|t) 6= 0. Then I(s, r) = I(t, r).

From proposition 1, the mutual information I(x, y) may be bounded as

I(x, y) = I(f, y) ≥ Ĩ(f, y), where Ĩ(f, y)
def
= 〈log q(f|y)〉p(x)p(f|x)p(y|f) +H(f). (18)

We make the simple assumption that the feature decoder is Gaussian, q(f|y) ∼ Nf (Uy,Σf ), for which

Ĩ(x, y) = −
1

2
tr
{

UTΣ−1
f U

(
Σy +WSFW

T
)}

+ tr
{

Σ−1
f UWSF

}

+H(f) + c (19)

where SF
def
= 〈ffT 〉p(f). If 〈f〉 = 0 then clearly SF corresponds to the sample covariance in the feature

space (see [14] for a discussion of centering of the data in feature spaces). This covariance is readily
computable from the training set as

SF =
1

M

M∑

m=1

φ(xm)φ(xm)T , (20)

where we assumed that x = φ−1(f). Note that if φ : x→ f is deterministic and p(x) =
∑M

i=1 δ(x− xi)/M
then φ(xi) corresponds to a re-labeling of the source pattern, leading to H(f) = H(x). As expected,
linear mappings φ(x) ≡ x result in SF = 〈xxT 〉 ≡ S, which reduces the objective (19) to (4).

It is easy to see that in general this case gives rise to non-linear source decoders q(x|y) =
∫

f
p(x|f)Nf (Uy, σ

2
f I);

however, they may be difficult to compute. This is an important limitation of the approach, since for
general feature mappings φ it may be difficult to reconstruct x from its encoded representation y.

4.1 Kernelized Representation

In what follows we assume that Σy = s2I ∈ R
|y|, Σf = σ2

f I ∈ R
|φ|, and |y| < M < |φ|. By analogy with

Section 3 we notice that rows of W and columns of U have dimension |φ|. Then they may be represented

2We assume Cartesian coordinates, i.e. δ(x− a) =
∏

i δ(xi − ai).
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in the basis defined by the span of {φ(xm)|m = 1, . . . ,M} and its orthogonal compliment as

W = AFT +W⊥ ∈ R
|y|×|φ|, U = FC+ U⊥ ∈ R

|φ|×|y|. (21)

Here F ∈ R
|φ|×M is the design matrix, U⊥, W⊥ are orthogonal to F, and A ∈ R

|y|×M , C ∈ R
M×|y| are

matrices of coefficients to be learned. Substitution into expression (19) results in

Ĩ(x, y) ∝ 2tr
{
CAK2

}
− s2tr

{
CTKC

}
− tr

{
AK2AT

[
CTKC+ (U⊥)TU⊥

]}
, (22)

where we ignored the terms independent of A, C and K. It is clear that since we are interested in
maximizing the bound, we may assume U⊥ = 0 ∈ R

|φ|×|y|.

The objective (22) may be readily used for learning coefficients A, C. In the considered case it may also
be applied to learning parameters Θ of the kernel function K(xi, xj ;Θ) which gives rise to the Gram
matrix K.

4.2 Nature of Optimal Solutions

Optimization of the bound (22) for the coefficients A results in

A = (CTKC)−1CT , (23)

which transforms the objective to

Ĩ(x, y) = tr
{
K2C(CTKC)−1CT

}
− s2tr

{
CTKC

}
= tr

{
U(UTU)−1UTSF

}
− s2tr

{
UUT

}
(24)

By analogy with Section 2, maximization of (24) gives rise to the non-linear PCA solution (and rotations)
for the left singular vectors of U and WT . (As before, we have ignored W⊥ and U⊥ in the definitions (21)
since they have no influence on the bound).

Just as in the linear case, in order to prevent divergence of ‖W‖F for s2 6= 0, it is useful to constrain the
singular values of U. In the special case when UTU = I, expressions (21) and (24) lead to

K2CR = KCRΛSF
. (25)

Here ΛSF
∈ R

|y|×|y| is a diagonal matrix of eigenvalues of SF and R ∈ R
|y|×|y| is a rotation matrix. From

(23) and (25) it is clear that optimal C and AT correspond to rotations of principal eigenvectors of the
Gram matrix K, which is the kernel PCA solution. Hence, kernel PCA can be viewed as a lower bound on
the mutual information between x and y in nonlinear Gaussian channels. Indeed, the bound enables us,
in a principled way, to choose between different parameters of the kernel function, or to choose between
competing kernels.

5 Optimal Kernel Functions

Optimal parameters Θ of the kernel function KΘ : |x| × |x| → R may be obtained by maximizing the
general objectives (13) or (19) or their kernelized versions. The optimization procedure may be viewed
as a special case of the IM algorithm:

1. For the fixed Gram matrix K, optimize the bound w.r.t U, W (or the dual parameters C and A).

2. For the fixed U, W (or C and A), optimize the bound w.r.t. the parameters Θ of KΘ.

For non-isotropic channels (or constrained encoder-decoder pairs) this may in general result in non-trivial
settings of the parameters Θ. In what follows we describe a few special cases of optimal kernel functions
for the simplest KPCA channel of Section 4.2. Our motivation here is gaining an intuition into choosing
kernel parameters which maximize the bound on the mutual information (see [15], [16] for a detailed
discussion of concentration properties of Gram matrices).
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5.1 Kernel PCA Channels

As before, we assume that K ∈ R
M×M is non-singular. From (24) and (25) it is clear that an alternative

formulation of the information maximization problem for the KPCA case is given by

max
Θ

max
C,M

[
tr
{
CTKC

}
− tr

{
M(CTC− I)

}]
≡ max

Θ

|y|
∑

i=1

λi(KΘ) ≤ tr {K} . (26)

Here M ∈ R
|y|×|y| is a matrix of Lagrange multipliers imposing orthonormality constraints on C ∈ R

M×|y|,
and λi(KΘ) is the i

th principal component of the Gram matrix K ∈ R
M×M corresponding to KΘ.

In general, in order to avoid divergence it is necessary to impose norm constraints on ‖K‖F . In this
case it is intuitive that the worst kernel has a flat spectrum (which is the case for K = cI), while the
optimal kernel function results in the Gram matrix K with an eigenspectrum concentrated at |y| principal
components.

Squared Exponential (RBF) Kernels

Let Kγ(xi, xj ; γ
2)

def
= exp{−‖xi − xj‖

2/(2γ2)} be a kernel function with the variance γ2. It is clear that
Kij ≤ Kii = 1 and tr {K} =M .

Proposition 2: For Squared Exponential kernels Kγ(x, x̃; γ
2) the optimal solution of (26) is attained in

the limit of diverging variance γ2.

Mixture Kernels

If K1 and K2 are positive semi-definite kernel functions then so is Kα
def
= αK1 + (1 − α)K2, where

α ∈ [0, 1]. Here we show that Kα optimized for the mixing coefficient α converges to the single best
kernel component. This results from the following propositions:

Proposition 3: Let L = diag(λ1, . . . , λM ) ∈ R
M×M , where λ1 ≥ λ2 ≥ . . . ≥ λM , and R ∈ R

M×|y| such

that RTR = I|y|. Then tr
{
RTLR

}
≤
∑|y|

i=1 λi.

Proposition 4: Let Kα
def
= αK1 + (1 − α)K2, where α ∈ [0, 1]. Then the optimal solution of (26) is

obtained for α ∈ {0, 1}.

The obtained result is quite intuitive. Just as a mixture distribution is generally vaguer than a distribution
defined by a single mixture component, eigenspectra of mixtures of positive semi-definite matrices are
generally flat. This makes them sub-optimal in the KPCA channels under the objective (26). Finally,
note that the results of proposition 4 may be easily generalized to any convex mixture of fixed kernel
functions.

6 Experiments

Visualizing a Low-Dimensional Structure: Let Kγ(xi, xj ; γ2) be a Squared Exponential kernel with
a fixed variance parameter γ2. Here we show the influence of γ2 on the bound (22) for a simple KPCA
channel (see Section 4.2). We also discuss performance of kernels with various parameter settings for
visualizing an intrinsically low-dimensional structure of the data.

Figure 1 (a) shows M = 50 training points xi ∈ R
2. The points were sampled uniformly from a semi-

circular unit arc, and perturbed by a small noise ε ∼ Nε(0, 0.05I2). From the construction it is clear
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Figure 1: (a): training data, M = 50, |x| = 2. (b): change of Ĩ(x, y; γ2) with an increase of the inverse

variance γ−2 for Squared Exponential kernels, |y| = 1. Insert: Residuals res(γ−2)
def
= (M − λ1(Kγ))/M

as a function of γ−2.

that the (approximate) intrinsic dimension of each data point xi is defined by an angle ψ(xi) ∈ R. One
may hope that maximization of I(x, y) may result in the codes which capture useful 1d information
about the angles. Since the points were sampled uniformly and the noise was small, the phase change

∆ψ(xi+1, xi)
def
= ψ(xi+1) − ψ(xi) between the neighboring points should be approximately constant. If

y(xi) indeed corresponds to a (scaled) phase ψ(xi), we can expect y(xi) to be roughly linear as a function
of i.

Figure 1 (b) shows the change in log Ĩ(x, y; γ2) with a decrease in the variance. We see that the maximum
of the bound is attained in the limit of γ2 →∞ (cf proposition 2). The inserted graph shows the relative

weight of theM−1 minor eigenvalues
∑M

i=2 λi(Kγ)/M , which decreases as γ2 →∞. We therefore expect
that in the specified channel the information transmission improves with the growth of γ2.

To confirm that the choice of γ2 influences the visualization performance, we sampled M1 = 75 testing
points at uniform from the same process. Figure 2 plots projections yi of the testing points xi as a function
of i (for illustration purposes, higher values of yi are plotted in lighter colors). For a better visualization,
the data was centered in the feature space (see [14]). Parameters γ2 of the kernel functions Kγ were fixed
at γ2 = 0.1, 1, and 100, which resulted in the residuals decreasing as res(γ2) ≈ 0.809, 0.446, 0.170. From
figure 2 (a), (b), (c) we see that as γ2 increases, y(xi) becomes approximately linear in i. For a high
γ2 this indicates an approximately linear change of projection coordinates, which is characteristic of the
intrinsic parameterization of the data. Finally, figure 2 (d) shows a linear projection of the testing data
onto the principal eigenvector of the sample covariance S. One can see that even though a part of the
plot is approximately linear, ψ(xi) has an extraneous region of the constant phase towards the darker
end of the line (which is easily explained by the form of the training data shown on figure 1 (a)).

Digit Clustering: Figure 3 shows projections of the real-world digits onto the 3 principal components
of the feature covariance SF for the squared exponential kernel function Kγ , γ

2 = 100. The training data
consisted of M = 90 instances of digits 4, 5, and 7 (30 of each kind) with |x| = 196. Prior to clustering,
the patterns were centered and normalized. It is intuitive that if y contains information about distances
to cluster centers, it may be useful for reconstructing x, so clustering is easily explainable. However, this
is mainly an effect of constraints on the channel parameters (as will be discussed elsewhere).

7 Discussion

We have shown that optimal Gaussian decoders have a strong relation to popular dimensionality reduction
techniques. One of the main contributions of this paper is a principled objective function which can be
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Figure 2: Projection y(xi) as a function of i for M1 = 75, |y| = 1. (a), (b), (c): RBF kernels, γ2 =
0.1, 1, 100. (d): A linear projection onto the 1st principal eigenvector of S.
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Figure 3: Clustering of 180 instances of 3 digits with RBF kernels, |x| = 196, |y| = 3, γ2 = 100.

used to learn and compare kernel parameters. One can also envisage a similar approach based on a
kernelized version of autoencoders. In particular, the bound here for the Gaussian decoders is strongly
related to using a minimal least squares linear reconstruction error. However, our method is arguably
more general, since it naturally generalizes to different channels, and is well founded from an information
theoretic viewpoint. The result that using a linear decoder does not improve the situation much is
analogous to the well-known result in autoencoders that one needs more than one hidden unit to improve
on PCA [3].

Recently, Lawrence has introduced a nice way to use Gaussian processes for dimension reduction [9]. Our
work is related to this, in the sense that both methods produce PCA as a limiting special case. However,
the work of Lawrence is not directly related to kernel PCA, although it does indeed enable the evaluation
of different kernel functions. From a practical viewpoint, our method may be computationally rather
more convenient since, unlike [9], it does not require non-linear optimization to perform dimensionality
reduction.
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Appendix

Proposition 1 : Proof: From basic properties of the mutual information (see e.g. [5]) it is easy to see
that

I(s, t; r) = H(r)−H(r|t, s) = I(t, r), (27)

I(s, t; r) = H(s) +H(t|s)−H(s|r)−H(t|s, r)

= I(s, r) +H(t|s)−H(t|s, r). (28)

Utilizing the chain structure and the deterministic mapping p(t|s), we obtain

p(t|s, r) =
δ(t− f(s))p(r|t)
∫

t
δ(t− f(s))p(r|t)

=
δ(t− f(s))p(r|f(s))

p(r|f(s))
, (29)

i.e. p(t|s, r) = p(t|s). Here we used f(x)δ(x − a) = lime→0 [f(a− e) + f(a+ e)] δ(x − a)/2 (see e.g. [8]).
Then H(t|s, r) = H(t|s), and from (27), (28) we obtain I(s, r) = I(t, r). ¥

Proposition 2 : Proof: From the definition of Kγ(x, x̃; γ
2), we get ∀i.∀j. limγ2→∞Kij = 1, i.e.

rank(K) → 1 as γ2 → ∞. Then limγ2→∞

∑|y|
i=1 λi(Kγ) = λ1(Kγ) = M = tr {K}, which is a global

optimum of the objective in (26) independently of the size of |y|. ¥

Proposition 3 : Proof: The proof follows straight away from the solution of the constrained optimiza-
tion problem R̃ = argmaxRÎR, where

ÎR = tr
{
RTLR

}
− tr

{
M(RTR− I|y|)

}
. (30)

The optimization results in R̃ ∈ R
M×|y| corresponding to |y| principal components of L ∈ R

M×M . Since L
is a diagonal matrix with a sorted eigenspectrum, we get R̃T = [I|y| 0], where 0 ∈ R

|y|×(M−|y|) is a matrix

of zeros. Then ÎR ≤ ÎR̃ =
∑|y|

i=1 λi. ¥

Proposition 4 : Proof:

Let Kα = UΛUT , K1 = U1Λ1U
T
1 , and K2 = U2Λ2U

T
2 be eigenvalue decompositions of the Gram matrices

corresponding to the kernel functions Kα, K1, and K2. We are interested in maximizing
∑|y|

i=1 λi(Kα),
which may be written as

|y|
∑

i=1

λi(Kα) = tr
{
VTUΛUTV

}

= αtr
{
RT1Λ1R1

}
+ (1− α)tr

{
RT2Λ2R2

}
.

(31)

Here columns of V ∈ R
M×|y| correspond to the principal eigenvectors of Kα, R

T
1

def
= VTU1 ∈ R

|y|×M , and

RT2
def
= VTU2 ∈ R

|y|×M . From (31) and proposition 3 we get

|y|
∑

i=1

λi(Kα) ≤ α

|y|
∑

i=1

λ
(1)
i + (1− α)

|y|
∑

i=1

λ
(2)
i ≤ max

j

|y|
∑

i=1

λ
(j)
i , (32)

where λ
(j)
i corresponds to the ith diagonal element of Λj , j ∈ {1, 2}. Apart from the invariant cases, the

maximum is achieved for α = 2− argmaxj∈{1,2}
∑|y|

i=1 λ
(j)
i ∈ {0, 1}. ¥
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