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ABSTRACT

We describe a unified computational framework for learning
causal dependencies between genotypes, biomarkers, and phe-
notypic outcomes from large-scale data. In contrast to previous
studies, our framework allows for noisy measurements, hidden
confounders, missing data, and pleiotropic effects of genotypes
on outcomes. The method exploits the use of genotypes as “in-
strumental variables” to infer causal associations between pheno-
typic biomarkers and outcomes, without requiring the assumption
that genotypic effects are mediated only through the observed
biomarkers. The framework builds on sparse linear methods
developed in statistics and machine learning and modified here
for inferring structures of richer networks with latent variables.
Where the biomarkers are gene transcripts, the method can be
used for fine mapping of quantitative trait loci (QTLs) detected
in genetic linkage studies. To demonstrate our method, we exam-
ined effects of gene transcript levels in the liver on plasma HDL
cholesterol levels in a sample of 260 mice from a heterogeneous
stock.

Key words: sparse linear models, causality, structure learning,
Bayesian networks, Mendelian randomization, instrumental vari-
ables

1. INTRODUCTION

One of key goals of epidemiology and systems biology is to dis-
tinguish causal and non-causal explanations of observed associ-
ations between phenotypic biomarkers and disease outcomes. In
principle it is possible to exploit genotypic variation that perturbs
the biomarkers to learn about these relationships. The classic
Mendelian randomizationmethod [16] addresses this problem
using the framework ofinstrumental variableanalysis [2, 3, 30]
that perturbs the phenotypic biomarker. The instrumental vari-
able argument assumes that effects of the genetic instrumentg on
the biomarkerx are unconfounded, and that effects of the instru-
ment on the outcomey are mediated only through the biomarker
(no pleiotropy), e.g. [19]. The assumption of no confounding
is guaranteed by the laws of Mendelian genetics, if population
stratification has been adequately controlled. However, the re-

quirement to assume no pleiotropy restricts the application of
the classic instrumental variable argument to a few biomarkers
and genes for which the genotypic effects are well understood.
Thus this approach cannot easily be extended to exploit multiple
biomarkers and genome-wide genotype data.

A more general approach to exploiting genotypic variation to in-
fer causal relationships between gene transcript levels and quan-
titative traits of interest, called the“likelihood-based causality
model selection” (LCMS)by its authors, has been developed by
Schadt et. al. [31] and subsequently extended (see e.g. [5]). In
contrast with the classical instrumental variable argument, this
approach does not require the assumption of no pleiotropy, but
instead compares models with and without pleiotropy. After fil-
tering to select a set of gene transcripts{x j} that are associated
with the traity, and loci{gi} at which genotypes have effects on
transcript levelsx j , each possible triad of marker locusgi , tran-
scriptx j and traity is evaluated to compare three possible models:
causal effect of transcript on traitp(y,x j |gi) = p(y|x j )p(x j |gi),
reverse causationp(y,x j |gi) = p(y|gi)p(x j |y), and a pleiotropic
model p(y,x j |gi) = p(y|x j ,gi)p(x j |gi). One of these three mod-
els is selected as the most likely explanation of the observed asso-
ciations according to standard likelihood-based scores penalized
by complexity: either Akaike’s Information Criterion (AIC) [31],
or the Bayesian Information Criterion (BIC) [5].

While the LCMS and related approaches [31, 5] relax the as-
sumption of no pleiotropy of the classic instrumental variable
method, they have three key limitations. First, the method is not
Bayesian (the BIC score is only a crude approximation to the
correct Bayesian procedure for model selection). Thus LCMS
may only be heuristically extended to problems where the num-
ber of variables exceeds the number of measurements (the so-
called largep, small n setting typical for genome-wide stud-
ies), and lacks a formal basis for model comparison. A second
key limitation is that effects of loci and biomarkers on outcomes
are not modeled jointly, so widely varying inferences are pos-
sible depending on the choice of the triads{gi ,x j ,y}. This is
demonstrated by Figure 1, which compares differences in the AIC
scores for the causal and reverse models for various choices of
the genetic instruments and a fixed biomarker-outcome pair. AIC
scores shown on Figure 1 have been centered relative to those
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Figure 1: Possible arbitrariness of inference of the likelihood-
based causality model selection approach.Left: Histogram of the
difference of the AIC scores for the causal and reverse hypotheses
for liver expressions ofCyp27b1and plasma HDL cholesterol in
heterogeneous mice, for different choices of genetic instruments
gi . Depending on the choice ofgi , either causal or reverse expla-
nations are favored. No latent confounders are taken into account.
Right: AIC scores of the causal (top) and reverse (bottom) mod-
els for each choice of genetic instrument (the straight lines link
the scores corresponding to a fixed choice ofgi).

of the pleiotropic model. It is easy to see that inference of the
causal direction of the LCMS may be somewhat arbitrary, de-
pending on the choice of instrumentgi . The LCMS approach may
potentially be extended to include multiple instruments, though
for high-dimensional datasets with few observations (p > n) the
Bayesian formulation would be more justified. Most importantly,
the LCMS method does not allow for dependencies between mul-
tiple biomarkers, measurement noise, or latent variables (such as
unobserved confounders of the biomarker-outcome associations).
Thus the method of Schadt et. al. [31] can potentially make in-
correct conclusions about the direction of causality in situations
when an underlying association is best explained by unobserved
confounding factors.

Another approach to modeling joint effects of genetic loci and
biomarkers (gene expressions) was described by [43]. They mod-
eled the expression measurements as three ordered levels, and
used a biased greedy search over model structures from multi-
ple starting points to find models with high BIC scores. Though
applicable for large-scale studies, the approach looses informa-
tion by using categorical measurements, and does not allow for
measurement noise or latent variables. Many other recent model
selection and structure learning methods from machine learning
and systems biology literature are also either not easily extended
to include latent confounders, or applicable only for relatively
low-dimensional settings with many observations (e.g. [34], [18],
[20], [23]).

This paper gives a high-level outline of a unified framework
for modeling relations between genotypes, phenotypic biomark-
ers and outcomes that is both flexible enough to handle realis-
tic models, and computationally tractable enough to handle large
datasets. OurSparse Instrumental Variables (SPIV)framework
draws on sparse modeling methods developed in engineering,
machine learning, and statistics. The approach models joint ef-
fects of loci and biomarkers, and may be used for distinguishing
causal and non-causal explanations of observed associations be-

tween phenotypic biomarkers and outcomes, even when some of
the genotypic effects may be pleiotropic. It allows for measure-
ment errors in the phenotypic biomarkers and outcomes, and for
latent variables that generate coupling between these biomarkers
and confound the biomarker-outcome associations. A somewhat
more technical discussion of the method aimed at the machine
learning audience is given in [1]. Here we give a general descrip-
tion of the approach in the context of the previous work on causal-
ity detection in genetic studies. We discuss some of the more
practical issues related to the important problem of feature selec-
tion (reducing dimensionality of the genome-wide data) prior to
performing the sparse instrumental variables analysis. We also
illustrate influence of preprocessing on the results of the SPIV
inference.

2. METHODS

Our SPIV approach relies on Bayesian modeling of linear as-
sociations between the modeled variables, with the sparseness-
inducing prior on links between the variables. The Bayesian
framework [11] offers a rigorous approach to model comparison
grounded in the rules of probability calculus, which allows formal
testing of specific modeling hypotheses if required. It also allows
prior biological information to be included if available: for in-
stance cis-acting genotypic effects on transcript levels are likely
to be stronger and less pleiotropic than trans-acting effects on
transcript levels. The Bayesian framework is valid even when the
number of variables exceeds the number of measurements which
is typical for genetic studies; the marginal likelihood automati-
cally penalizes models that have more parameters than needed to
explain the data.

The SPIV method allows for rich dependencies between geno-
types g, biomarkersx, and phenotypic traitsy, under the
biologically-motivated assumptions that genotypic effects are un-
confounded and causal. The prior on the effects favors sparse-
ness, which implies that links specifying dependencies between
the variables will tend to be pruned when the model is fitted, un-
less they are important for explaining the observed data. Even
though strong associations may be quite rare, the retained ef-
fects are allowed to be large where this is supported by the data.
The search over a huge space of dependence hypotheses is re-
placed by the posterior inference of associations between vari-
ables. The posterior distribution of the parameters is approxi-
mated at its mode obtained by an efficient optimization algorithm,
which iterates to a local maximum of the model best supported
by the data. As a result, a heuristic search over parent nodes of
a directed graphical model is replaced by a continuous optimiza-
tion problem, which combines subset selection and regression in
the presence of latent variables. The method is motivated by the
automatic relevance determinationapproaches (e.g. [21], [26],
[38]) and the adaptive shrinkage (e.g. [37], [8], [44]). Here it is
adapted for sparse multi-factor instrumental variable analysis in
the presence of unobserved confounders, pleiotropy, and noise.

As the number of genetic instruments grows, evidence in favor
of the correct model (e.g. causal or pleiotropic) will be less
dependent upon the priors on model parameters. For instance,
with three genotypic instruments perturbing a single transcript,
the pleiotropic model has seven adjustable parameters, while the
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Figure 2: SPIV structure representing dependencies between
genotypes, biomarkers, and phenotypes in the presence of noise
and latent variables. Genotypic features corresponding to close
locations along the genome are grouped together (e.g.gi , g j ).
Dashed lines show weaker links which may shrink to zero in the
posterior. Filled and clear nodes correspond to observed and la-
tent variables respectively.

causal model has only four. Where several genotypic variables
perturb a single transcript and the causal model fits the data nearly
as well as the pleiotropic model, the causal model will tend to be
selected, because the slightly better fit of the pleiotropic model
will be outweighed by the greater penalty imposed by several ex-
tra adjustable parameters.

Model Parameterization
The model is specified with four classes of variables: genotypic
and environmental covariatesg ∈ R

|g|, phenotypic biomarkers
x ∈ R

|x|, outcomesy ∈ R
|y|, and latent factorsz1, . . . ,z|z|. The

dimensionality of the latent factors|z| is fixed at a moderately
high value (extraneous dimensions will tend to be pruned un-
der the sparse prior). The latent factorsz play two major roles:
they represent the shared structure between groups of biomarkers,
and confound biomarker-outcome associations. The biomark-
ersx and outcomesy are specified as hidden variables inferred
from noisy observations ˜x ∈ R

|x̃| andỹ ∈ R
|ỹ| (note that|x̃| = |x|,

|ỹ| = |y|). The effects of genotype on biomarkers and outcome
are assumed to be unconfounded. Pleiotropic effects of genotype
(effects on outcome that are not mediated through the phenotypic
biomarkers) are accounted for by an explicit parameterization of
p(y|g,x,z). The graphical representation of the model is shown
on Figure 2, with filled and clear nodes corresponding to the vis-
ible and hidden variables respectively.

All the likelihood terms of the corresponding graphical model
p(x, x̃,y, ỹ,z|g) are linear Gaussians with diagonal covariances,
so that

y = WTx+WT
z z+WT

g g+ ey, ỹ = y+ eỹ (1)

whereey ∼ N (0,Ψy), eỹ ∼ N (0,Ψỹ), z ∼ N (0,Ψz), andW ∈

R
|x|×|y|, Wz ∈ R

|z|×|y|, Wg ∈ R
|g|×|y| are regression coefficients

(for clarity, we assume the data is centered). Note that the ob-
served measurements of the outcome variables ˜y are perturba-

tions of the ground truth outcomesy. The remaining dependen-
cies are expressed analogously.

Prior Distribution
All model parameters are specified as random variables with prior
distributions. For computational convenience, the variance com-
ponents of the diagonal covariancesΨy, Ψỹ, etc. are specified
with inverse Gamma priorsΓ−1(ai ,bi), with hyperparametersai
andbi fixed at values motivating the prior beliefs about the pro-
jection noise (often available to lab technicians collecting trait
or biomarker measurements). One way to view the latent con-
foundersz is as missing genotypes or environmental covariates,
so that prior variances of the latent factors are peaked at val-
ues representative of the empirical variances of the instruments
g. Empirically, the choice of priors on the variance components
appears to be relatively unimportant as long as such priors are
broad, and other choices may be considered [9].

A convenient choice of a sparseness-inducing prior on weight pa-
rametersW, Wz, Wg, etc. is a product of zero-mean Laplace and
zero-mean normal distributions

p(w) ∝
|w|

∏
i=1

Lwi (0,γ1)Nwi (0,γ2), (2)

Lwi (0,γ1) ∝ exp{−γ1|wi |}, andNwi (0,γ2) ∝ exp{−γ2w2
i }. Due

to the heavy tails of the LaplacianLwi , the prior p(w) is flex-
ible enough to capture large associations even if they are rare.
Higher values ofγ1 give a stronger tendency to shrink irrelevant
weights to zero. It is possible to set differentγ1 parameters
for different linear weights (e.g. for the cis- and trans-acting ef-
fects); however, for clarity of this presentation we shall only use a
global parameterγ1. The isotropic Gaussian component with the
inverse varianceγ2 contributes to the grouping effect (see [44],
Theorem 1). The considered family of priors (2) induces better
consistency properties [42] than the commonly used Laplacians
[37, 9, 41, 27, 32]. It has also been shown [15] that important as-
sociations between variables may be recovered even for severely
under-determined problems (p ≫ n) common in genetics. The
model of Figure 2 withp(w) defined as in (2) generalizes LASSO
and elastic net regression [37, 44]. As a special case, it also in-
cludes sparse conditional factor analysis. Other sparse priors on
linear weights, such as Student-t, “spike-and-slab”, or inducing
Lq<1 penalties tend to result in less tractable posteriors even for
linear regression [10, 38, 8], which also motivates the choice of
(2). Some other intuitions about the influence of the sparse prior
(2) on the causal inference is discussed in [1].

Inference
While the choice of prior (2) encourages sparse solutions, it
makes the exact inference of the posterior parametersp(θ|D) an-
alytically intractable. The most efficient approach is based on
the maximum-a-posteriori (MAP) treatment ([37], [9]), which re-
duces to solving the optimization problem

θMAP = argmax
θ

{logp({ỹ},{x̃}|{g},θ)+ logp(θ)} (3)

for the joint parametersθ, where the latent variables have been
integrated out. Compared to other approximations of inference
in sparse linear models based e.g. on sampling or expectation
propagation [27, 32], the MAP approximation allows for an effi-
cient handling of very large networks with multiple instruments



and biomarkers, and makes it straightforward to incorporate la-
tent confounders. Depending on the choice of the global sparse-
ness and grouping hyperparametersγ1,γ2, the obtained solutions
for the weights will tend to be sparse, which is also in contrast
to the full inference methods. In high dimensions in particular,
the parsimony induced by point-estimates will facilitate structure
discovery and interpretations of the findings.

One way to optimize (3) is by an EM-like (expectation-
maximization) algorithm, with some tricks for ensuring numer-
ical stability (see [1] for some details). The hyperparameters
may be marginalized out for a specific choice of the hyper-prior,
set heuristically based on the expected number of links to be
retained, or set by cross-validation – in what follows, we use
the cross-validation. Once a sparse representation is produced
by pruning irrelevant dimensions, other more computationally-
intensive inference methods for the full posterior (such as expec-
tation propagation or MCMC) may be used in the resulting lower-
dimensional model if required. After fitting SPIV to data, formal
hypotheses tests may be performed by comparing the approxi-
mate marginal likelihoods of the specific models for the retained
instruments, biomarkers, and target outcomes. One way of eval-
uating these is by the Laplace approximation atθMAP (e.g. [21]).

Feature Selection
Due to the choice of the sparseness-inducing prior on model pa-
rameters (2), our approach may be used for tasks where the num-
ber of dimensionsp exceeds the number of available observations
n. However, for genome-wide studies the dimensionality of data
needs to be reduced in order for the inference to be computation-
ally tractable. For example, for a setting with∼ O(105) geno-
typic features and∼ O(104) biomarkers corresponding to gene
expression profiles, the number of interaction terms between in-
struments and biomarkers may exceedO(109), which is expen-
sive to analyze or even keep in memory. We therefore apply sub-
set selection methods to reduce the number of interactions in the
SPIV model to∼ O(105).

We note that for the SPIV model with high-dimensional
biomarker vectorsx (such as gene expressions) and descriptors of
genotypic variationsg (such as vectors of expected founder hap-
lotypes corresponding to each single nucleotide polymorphism),
both the number of biomarkers and the number of instruments
may need to be reduced. We combine several common feature
selection methods based on filters and forward selection [12], as
well as methods based on sparse linear regression [37, 44] in a
bootstrapping setting, where feature selection methods are ap-
plied multiple times for different samples of the training data.

In order to select features to use in the SPIV model, we applied
filters based on several approximations of the unconditional mu-
tual informationI(xi ;y) between featurexi and outputy, and the
conditional mutual informationI(xi ;y|e) given the external co-
variatese (such as gender and age). While the filter-based meth-
ods are computationally efficient and relatively insensitive to the
measurement noise, they may produce highly redundant repre-
sentations and obscure some of the weaker (but nevertheless im-
portant) dependencies. The reason for this is that the features are
analyzed individually, rather than jointly; thus, filter-based meth-
ods are not guaranteed to produce most informative sets of fea-

tures. We therefore also applied two feature selection approaches
based on the forward selection, where the regression accuracy
and the approximate mutual information were used as selection
criteria to iteratively determine new features to join with the cur-
rent set in order to explain the residual structure.

The forward selection approach with the information-theoretic
criterion is less common than the standard filters or step-wise re-
gression (e.g. [12]), and we describe it in more detail. Here each
step of the forward selection procedure was aimed at finding a set
of inputs which werejointly predictive about the outputs, by max-
imizing the mutual informationI(x,e;y) with respect to the sub-

set of featuresx
def
= {xi}. Note that this is in contrast to filter meth-

ods, where the information content between asingle featurexi
and outcomey is maximized. SinceI(x,e;y) = I(x;y|e)+ I(e;y),
the equivalent optimization task isx = argmaxx I(x,e;y) ≡

≡ argmax
x

〈KL(p(y|e,x)‖p(y|e))〉p(y,e,x) , (4)

where 〈. . .〉p denotes an average overp, and KL(q‖p) is the
Kullback-Leibler divergence between distributionsq and p (e.g.
[6]). By utilizing the chain rule for mutual information, the op-
timization can be performed sequentially. For Gaussians, it re-
duces to optimizing the log-determinant of the conditional co-
variance matrix cov(y|x,e). Note that from (4), any new subset
of features is deemed to be predictive about the outputs only if
the predictions from the new augmented set are significantly dif-
ferent from the predictions from the previously selected features,
which helps in finding non-redundant predictors.

In addition to filters and forward-selection approaches, we also
applied less greedy methods based on the sparse linear regres-
sion, which combine predictive inference with subset selection
in a continuous optimization setting. Here we used the LASSO
and elastic net methods [37, 44], with the hyperparameters set by
cross-validation.

Finally, we note that each feature selection approach was applied
in two different contexts:

1. in the instrumental variable (IV)setting, we first selected
a subset of biomarkers̃X predictive of the outcomey, and
then selected a subset of instrumentsG̃predictive ofX̃. This
selection is useful for identifying target biomarkers most
strongly associated with disease outcomes, and genetic in-
struments explaining regularities in the candidate biomark-
ers. This setting is important for detecting possible causes
of diseases;

2. in thequantitative trait loci (QTL)setting, we first selected
a subset of genetic instrumentsĜ predictive of the outcome
y, and then selected a subset of biomarkersX̂ that was most
informative about the chosen instrumentsĜ. This selection
is most appropriate for fine-mapping a genotypic region as-
sociated with a disease outcome or quantitative trait to a few
individual genes.

The IV and QTL features were combined to produce the joint sets
X̃∪X̂ andG̃∪Ĝ for each iteration of the bootstrapping procedure.
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Figure 3: Sparse instrumental variables for the mouse dataset.Top left: scatter plot of the mutual informationI({gi ,e}; ỹ) between each
locusgi and environmental covariatese = {age, sex}, and the observed HDL measurements.Bottom left:square of the conditional correlation
coefficientR2(x̃i , ỹ|e) between observations of the gene expressions and HDL. Note a cluster of middle-rank correlations at chromosome 1,
and several spikes of higher correlations scattered along the genome.Top right: maximum a-posteriori weightsθMAP. Concentration
parametersγ1 ≈ 40 andγ2 ≈ 10 have been obtained by cross-validation. Note a cluster of pleiotropic links on chromosome 1 at about 173
MBP, and nonzero direct effects of 8 biomarkers.Bottom right:Mutual informationI(xi ;y|e,θMAP) between the underlying biomarkers and
the unobserved trait expressed from the model atθMAP, under the joint Gaussian assumption. VSN preprocessing [14] has been used for
transforming the RNA transcripts as detailed in [13].

The final set of biomarkers and instruments to use in the SPIV
model was then constructed based on the features selected most
frequently for multiple bootstrap subsamples.

3. RESULTS

To demonstrate SPIV for causality and fine-mapping studies, we
examined effects of gene transcript levels in the liver on plasma
high-density lipoprotein (HDL) cholesterol levels for a popula-
tion of 260 heterogeneous stock mice genotyped and phenotyped
for the trait of interest. Details of the data used in the experi-
ments, as well as processing of the gene expressions, is described
in Appendix A. At each of the 12500 retained marker loci, geno-
types were described by 8-D vectors of expected founder ancestry
proportions inferred from the raw marker genotypes by an HMM-
based reconstruction method [24]. The genetic variables were
augmented by age and sex. The full set of phenotypic biomark-
ers consisted of levels of 47429 transcripts, appropriately trans-
formed and cleaned (see Appendix A for details). Before apply-
ing our method, we decreased the dimensionality of the genetic
features and RNA expressions by using a combination of seven
feature (subset) selection methods, based on applications of fil-
ters, greedy (step-wise) regression, sequential approximations of
the mutual information between the retained set and the outcome

of interest, and applications of regression methods with LASSO
and elastic net shrinkage priors for the genotypesg, observed
biomarkers ˜x, and observed HDL measurements ˜y as discussed
in Section 2. For the sparse regression approaches, global hy-
perparameters were obtained by 10-fold cross-validation. After
applying subset selection methods, the data typically contained
∼ O(103) instruments and∼ O(102) biomarkers.

The results of our analysis of this dataset are shown on Figure
3. Thetop right plot shows maximum a-posteriori weightsθMAP
computed by running the EM-like optimization procedure to con-
vergence from 20 random initializations, which took approxi-
mately 9.5 hours of execution time (unoptimized Matlab code,
simple desktop). Note that only a fraction of the variables re-
mains in the posterior. The spikes of the pleiotropic activations
in sex chromosome 20 and around chromosome 1 are consis-
tent with the biological knowledge [39]. The biomarker with the
strongest effect on HDL (computed as the mean MAP weight
wi : xi → y divided by its standard deviation over multiple runs)
is the expression ofCyp27b1(gene responsible for vitamin D
metabolism). Knockout of theCyp27b1gene in mice has been
shown to alter body fat stores [25], and this might be expected to
affect HDL cholesterol levels. A subsequent comparison of spe-
cific reverse, pleiotropic, and causal models forCyp27b1, HDL,
and the whole vector of predictive loci indicated a slight prefer-
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Figure 4: Conditional correlation coefficientsR2(x̃i , ỹ|e) and mutual informationI(xi ;y|e,θMAP) for the raw gene expression data. Note
significant differences from Figure 3 in both raw correlations and fine-mapping results. BothApoa2andRgs5remain the most significant
predictive factors for HDL despite a change in the processing.

ence for the reverse hypothesis (with the ratio of Laplace approxi-
mations of the marginal likelihoods of reversevscausal models of
≈ 1.95±0.27). This is in contrast to the LCMS which is strongly
affected by the choice of an instrument (Figure 1 shows the re-
sults forCyp27b1, HDL, and the same choice of instruments). In
this case, no hidden confounders appear to have strong effects on
the outcome (which is not true in general). Adjusting for sex and
age prior to performing feature selection and inference did not
significantly change the results.

We can also apply SPIV to map a genotypic region associated
with a trait of interest to a few most informative genes (the
fine-mapping problem). Figure 3 (bottom right) shows the mu-
tual informationI(xi ,y|e = {age,sex}) between the underlying
biomarkers and unobserved HDL levels expressed from the SPIV
model at the optimal parameter settingsθMAP. The mutual in-
formation takes into account not only the strength of the direct
effect ofxi ony (Figure 3,bottom left), but also associations with
the pleiotropic instruments, strengths of the pleiotropic effects,
dependencies between the instruments, and effects of the latent
factors confounding the association between the biomarkers and
the outcome. The majority of transcripts predictive about HDL
are fine-mapped to a small region on chromosome 1 which in-
cludesUap1, Rgs5, Apoa2, andNr1i3. As we note in [1], the
informativeness of these genes about the HDL cholesterol can-
not be inferred simply from correlations between the measured
gene expression and HDL levels; for example, when ranked in
accordance toR2(x̃i , ỹ|age,sex), the top 4 genes have the rank-
ings of 838, 961, 6284, and 65 respectively. The findings are also
biologically plausible and consistent with high-profile biological
literature (with associations betweenApoa2and HDL described
in [39], and strong links ofRgs5to metabolic traits discussed in
[5], while Nr1i3 andUap1are their neighbors on chromosome 1
within ∼ 1Mbp). Note that the couplings are via the links with
the pleiotropic genetic markers on chrom 1 at∼ 173Mbp.

SPIV results appear to be stable for different choices of fea-
ture selection methods, data adjustments, and algorithm runs.
We note however that different results could potentially be ob-
tained based on the choice of animal populations or process-
ing of the biomarker (gene expression) measurements. This is
demonstrated on Figure 4, which shows the squares of the con-

ditional correlation coefficientsR2(x̃i , ỹ|e) and the mutual infor-
mationI(xi ;y|e,θMAP) expressed from the SPIV model atΘMAP
for the biomarkers and HDL for a different processing of the
gene expression data. Here we used the commonly applied log-
transformation of the expressions followed by the centering and
scaling (cf Huang et. al.’s [13] processing outlined in Appendix
A). Despite a significant change in both the data and the mu-
tual information profile,Apoa2 and Rgs5are still selected as
the most informative factors for HDL, which is consistent with
[39] and [5]. However, a subsequent analysis of causality in this
case showed strong effects of the latent confounders. Definitive
confirmation of these relationships would require gene knock-out
experiments. Significantly extended details of the methodology,
experimental setup, and applications to genetic datasets will be
published in specialized biology journals.

4. DISCUSSION

Whether or not causation may be inferred from observational data
has been a matter of philosophical debate. Pearl [29] argues that
causal assumptions cannot be verified without experimental in-
terventions, and that there is nothing in the probability distribu-
tion p(x,y) which can tell whether a change inx may have an
effect ony. Much of the work of Pearl and his followers fo-
cuses on the question of identifiability, i.e. determining sets of
graph-theoretic conditions when a post-intervention distribution
p(y|do(x)) may be uniquely determined from a pre-intervention
distribution p(y,x,z), e.g. [28, 4, 33]. If the causal effects are
shown to be identifiable, their magnitudes can be obtained by
statistical estimation, which for common models often reduces to
solving systems of linear equations.

In this paper, we do not explore identifiability conditions of the
extended instrumental variables model. Instead, we try to develop
a practical approach for determining a set ofcandidate causes
of an outcome for a large partially observed under-determined
genetic problem. The approach builds on the instrumental vari-
able methods that were historically used in epidemiological stud-
ies, and on approximate Bayesian inference in sparse linear la-
tent variable models. Specific modeling hypotheses are tested by
comparing approximate marginal likelihoods of the correspond-
ing direct, reverse, and pleiotropic models with and without latent



confounders. The approach is largely motivated by the observa-
tion that independent variables do not establish a causal relation,
while strong unconfounded direct dependencies retained in the
posterior modes even under large sparseness-inducing penalties
may indicate potential causality and suggest candidates for fur-
ther controlled experiments. We note here that from the Bayesian
perspective, the problem of inferring the direction of causality
may be viewed as that of model selection, where a modelMx→y

is compared withMy→x. Unless the priors are chosen in such a
way thatMx→y andMy→x also have identical posteriors, it may
be possible to infer the direction of the causal arrow (see MacKay
[22], Section 35). Here we follow [22] in allowing for flexible
priors of the models.

Technically, our sparse instrumental variables framework (SPIV)
may be viewed as an extension of LASSO and elastic net regres-
sion which allows for latent variables and pleiotropic dependen-
cies. While being particularly attractive for genetic studies, SPIV
or its modifications may potentially be applied for addressing
more general structure learning tasks. For example, when ap-
plied iteratively, SPIV may be used to guide search over richer
model structures (where a greedy search over parent nodes is re-
placed by a continuous optimization problem, which combines
subset selection and regression in the presence of latent vari-
ables). This may be useful, for example, for addressing complex
pathway identification studies. In contrast to the vast majority of
other recent model selection and structure learning methods from
machine learning literature (e.g. [34] and references, [18], [20],
[23]), SPIV is applicable in the practically interesting setting with
high-dimensional data and latent variables. Other extensions of
the framework could involve hybrid (discrete- and real-valued)
outcomes with nonlinear/nongaussian likelihoods.

Fundamentally, SPIV extends ideas of the instrumental variable
analysis in epidemiological studies by properly addressing sit-
uations when the genetic variables may be direct causes of the
hypothesized outcomes. It overcomes limitations of the LCMS
method by modeling joint effects of genetic loci and biomark-
ers in the presence of noise and latent variables. This work is
based on an efficient MAP treatment of the sparse Bayesian lin-
ear modeling framework, which imposes a penalty on rich struc-
tures by using a sparsity-inducing prior. In principle this ap-
proach may be used for an effective screening of potentially in-
teresting genotype-phenotype and biomarker-phenotype associa-
tions in genome-wide studies. It may also be used for identi-
fying specific genes associated with phenotypic outcomes. The
approach has wide application in identification of biomarkers as
possible targets for intervention, or as proxy endpoints for early-
stage clinical trials.
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A. DATA

Original Northport Heterogeneous Stock mice were obtained
from Robert Hitzemann of the Oregon Health Sciences Unit
(Portland, Oregon). At the time the animals arrived, they had
passed 50 generations of pseudorandom breeding [7]. The an-
cestors of the Heterogeneous Stock mice (i.e., prior to pseudo-
random breeding) were eight inbred strains of Mus musculus:
A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J,
and LP/J [7]. The animals were bred for phenotyping in a colony
established at the University of Oxford. Animals were housed at
a maximum of six per cage (mean of four) and maintained on a
12:12 light:dark cycle with ad libitum access to food and water.
All of the genotyped Oxford HS mice (n = 1940, including 1000
males) were used for the analyses.

Study design
(From [35]): One thousand nine hundred and forty Heteroge-
neous Stock mice (1000 male, 940 female) were put through a
battery of the tests. Any particular phenotype test was carried
out only once for each animal and the test was carried out on
approximately the same day after each animals birth. Six exper-
imenters phenotyped 95% of the mice. Six other experimenters
phenotyped the other 5%.

Phenotypes
The phenotypes in this study were selected to assess genetic in-
fluences on obesity and immunology.

Genotypes
(From [39]): From across the mouse genome, 13459 SNPs were
genotyped per animal by Illumina using their BeadArray plat-
form. Where possible, SNPs were selected that were polymor-
phic in at least some of the eight inbred HS founder strains.

RNA Transcript Collection and Analysis
(From [13]): For 260 of the 1940 genotyped HS mice, liver tis-
sue was frozen in liquid nitrogen and homogenised. RNA was
extracted from the tissue and messenger RNA molecules were
amplified. Labelled messenger RNA was hybridised to the Illu-
mina Mouse WG-6 v1 BeadArray, which contains 47429 unique
RNA probe sequences. Scans of the expression signals on the
arrays were imported into Illumina BeadStudio 3.0, allowing
background-subtracted signal values to be generated for each of
the probe sequences. These data were exported to the R statisti-
cal package [36] for normalization via the software packagevsn
[14]. Subsequently, the Box-Cox procedure of the MASS pack-
age [40] for R was employed to normalise the residuals of each of
the probe sequences when fit to a linear model of relevant predic-
tors, i.e. experimenter and batch. BLAT [17] was used to align
the transcripts to physical locations on the mouse genome.


