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Abstract. Mutual Information (MI) is a long studied measure of cod-
ing efficiency, and many attempts to apply it to population coding have
been made. However, this is a computationally intractable task, and most
previous studies redefine the criterion in forms of approximations. Re-
cently we described properties of a simple lower bound on MI [2]. Here
we describe the bound optimization procedure for learning of popula-
tion codes in a simple point neural model. We compare our approach
with other techniques maximizing approximations of MI, focusing on a
comparison with the Fisher Information criterion.

1 Introduction

The problem of encoding real-valued stimuli x by a population of neural spikes
y may be addressed in many different ways. The goal is to adapt the parameters
of any mapping p(y|x) to make a desirable population code for a given set of
patterns {x}. There are many possible desiderata. One could be that any recon-
struction based on the population should be accurate. This is typically handled
by appealing to the Fisher Information which, with care, can be used to bound
mean square reconstruction error. Another approach is to bound the probability
of a correct reconstruction. Here we consider maximizing the amount of infor-
mation which the spiking patterns y contain about the stimuli x (e.g. [7], [5]).
The fundamental information theoretic measure in this context is the mutual
information

I(x, y) ≡ H(x) − H(x|y), (1)

which indicates the decrease of uncertainty in x due to the knowledge of y.
Here H(x) ≡ −〈log p(x)〉p(x) and H(x|y) ≡ −〈log p(x|y)〉p(x,y) are marginal and
conditional entropies respectively, and the angled brackets represent averages
over all variables contained within the brackets.

The principled information theoretic approach to learning neural codes max-
imizes (1) with respect to parameters of the encoder p(y|x). However, it is easy
to see that in large-scale systems exact evaluation of I(x, y) is in general com-
putationally intractable. The key difficulty lies in the computation of the condi-
tional entropy H(x|y), which is tractable only in a few special cases. Standard



techniques often assume that p(x, y) is jointly Gaussian, the output spaces are
very low-D, or the channels are invertible [4]. Other methods suggest alterna-
tive objective functions (e.g. approximations based on the Fisher Information

[5]), which, however, do not retain proper bounds on I(x, y). Here we analyze
the relation between a simple variational lower bound on the mutual information
[2] and standard approaches to approximate information maximization, focusing
specifically on a comparison with the Fisher Information criterion.

1.1 Variational Lower Bound on Mutual Information

A simple lower bound on the mutual information I(x, y) follows from non-
negativity of the Kullback-Leibler divergence KL(p(x|y)||q(x|y)) between the
exact posterior p(x|y) and its variational approximation q(x|y), leading to

I(x, y) ≥ Ĩ(x, y)
def
= H(x) + 〈log q(x|y)〉p(x,y). (2)

Here q(x|y) is an arbitrary distribution saturating the bound for q(x|y) ≡ p(x|y).
The objective (2) explicitly includes1 both the encoder p(y|x) (distribution of
neural spikes for a given stimulus) and decoder q(x|y) (reconstruction of the
stimulus from a population of neural firings). The flexibility of the choice of the
decoder q(x|y) makes (2) particularly computationally convenient.

2 Variational Learning of Population Codes

To learn optimal stochastic representations of the continuous training patterns
x1, . . . , xM according to (2), we need to choose a continuous density function for
the decoder q(x|y). Computationally, it is convenient to assume that the decoder
is given by the isotropic Gaussian q(x|y) ∼ N (Uy, σ2I), where U ∈ R

|x|×|y|. For
simplicity, we limit the discussion to this case only (though other, e.g. correlated
or nonlinear cases may also be considered). Then for the empirical distribution

p(x) =
∑M

m=1 δ(x − xm)/M we may express the bound (2) as a function of the
encoder p(y|x) alone

Ĩ(x, y) ∝ tr
{
〈xyT 〉〈yyT 〉−1〈yxT 〉

}
+ const. (3)

Note that the objective (3) is a proper bound for any choice of the stochastic
mapping p(y|x). We may therefore2 use it for optimizing a variety of channels
with continuous source vectors.

1 The bound (2) corresponds to the criteria optimized by Blahut-Arimoto algorithms
(e.g. [6]); however, we optimize it for both encoder and decoder subject to enforced
tractability constraints.

2 From (3) it is clear that if 〈yyT 〉 is near-singular, the varying part of the objective
Ĩ(x, y) may be infinitely large. However, if the mapping x 7→ y is probabilistic and
the number of training stimuli M exceeds the dimensionality of the neural codes |y|,
the optimized criterion is typically positive and finite.



2.1 Sigmoidal Activations

Here we consider the case of high-dimensional continuous patterns x ∈ R
|x|

represented by stochastic firings of the post-synaptic neurons y ∈ {−1,+1}|y|.
For conditionally independent activations, we obtain

p(y|x) =
∏

i=1,...,|y|

p(yi|x)
def
=

∏

i=1,...,|y|

σ(yi(w
T
i x + bi)) (4)

where wi ∈ R
|x| is a vector of the synaptic weights for neuron yi, bi is its thresh-

old, and σ(a)
def
= 1/(1 + e−a). Optimization of (3) for W

def
= {w1, . . . ,w|y|} ∈

R
|x|×|y| readily gives

∆W ∝
∑

m=1,...,M

cov(y|xm)
(

D̃λxm
+ Σ−1

yy Σyx

(
xm − ΣxyΣ−1

yy λxm

))

xT
m, (5)

where Σyy
def
= 〈yyT 〉, Σyx ≡ ΣT

xy

def
= 〈yxT 〉 are the second-order moments, D̃

corresponds to the diagonal of Σ−1
yy Σyx

(
Σ−1

yy Σyx

)T
, and λi(x)

def
= 〈yi〉p(yi|x) =

2σ(wT
i x + bi) − 1 is the expected conditional firing of yi. The update for the

threshold ∆b has the same form as (5) without the post-multiplication of each
term by the training stimulus xT

m.
From (5) it is clear that the magnitude of each weight update ∆wi ∈ R

|x|

decreases with a decrease in the corresponding conditional variance var(yi|xm).
Effectively, this corresponds to a variable learning rate – as training continues
and magnitudes of the synaptic weights increase, the firings become more deter-
ministic, and learning slows down. One may also obtain a stochastic rule

∆W ∝ D̃〈λxxT 〉 + Σ−1
yy 〈λxxT 〉

(

Σxx − 〈xλT
x 〉Σ

−1
yy 〈λxxT 〉

)

(6)

where Σxx
def
= 〈xxT 〉. Clearly, (6) is decomposable as a combination of the

stochastic Hebbian and anti-Hebbian terms, with the weighting coefficients de-
termined by the second-order moments of the firings and input stimuli. Addi-
tionally, from (6) one may see that the “as-if Gaussian” approximations [7] are
suboptimal under the variational lower bound (2) – see [1] for details.

3 Fisher Information and Mutual Information

Let x̂ ∈ R
|x| be a statistical estimator of the input stimulus x obtained from the

stochastic neural firings y. It is easy to see that x → y 7→ x̂ forms a Markov chain
with p(x̂|y) ∼ δ(x̂ − x̂(y)). If x̂ is efficient, its covariance saturates the Cramer-
Rao bound (see e.g. [6]), which results in an upper bound on the entropy of
the conditional distribution H (p(x̂|x)). From the data processing inequality, one
may obtain a lower bound on the mutual information

I(x, y) ≥ H(x̂) + 〈log |Fx|〉p(x)/2 + const, (7)



where Fx = {Fij(x)}
def
= −〈∂2 log p(y|x)/∂xi∂xj〉p(y|x) is the Fisher Information

matrix. Despite the fact that the mapping y 7→ x̂ is deterministic, exact com-
putation of the entropy of statistical estimates H(x̂) in the objective (7) is in
general computationally intractable. It was shown that under certain assump-
tions H(x̂) ≈ H(x) [5], leading to the approximation

I(x, y) & ĨF (x, y)
def
= H(x) + 〈log |Fx|〉p(x)/2 + const, (8)

which is then used as an approximation of I(x, y) independently of the bias of the
estimator. Since H(x) is independent of p(y|x), maximization of (8) is equivalent
to maximization of (7) where the intractable entropic term is ignored.

For sigmoidal activations (4), the criterion (8) is given by

ĨF (x, y) ∝
∑

m=1,...,M

log
∣
∣WT cov(y|xm)W

∣
∣ + const. (9)

Interestingly, if |x| = |y| then optimization of (9) leads to ∆W = 2W−T −〈λxxT 〉,
which (apart from the coefficient at the inverse weight – redundancy term) has
the same form as the learning rule of [4] derived for noisless invertible channels.
Notably, the weight update has no Hebbian terms. Moreover, from (9) it is clear
that as the variance of the stochastic firings decreases, the objective ĨF (x, y) may
become infinitely loose. Since directions of low variation swamp the volume of the
manifold, neural spikes generated by a fixed stimulus may often be inconsistent.
It is also clear that optimization of ĨF (x, y) is limited to the cases when WT W ∈
R

|x|×|x| is full-rank, which complicates applicability of the method for a variety
of tasks involving relatively low-D encodings of high-D stimuli.

4 Variational Lower Bound vs. Fisher Approximation

Since ĨF (x, y) is in general not a proper lower bound on the mutual information,
it is difficult to analyze its tightness or compare it with the variational bound
(2). To illustrate a relation between the approaches, we may consider a Gaussian
decoder q(x|y) ∼ Nx(µy

;Σ), which transforms the variational bound into

Ĩ(x, y) = −
1

2

〈
tr

{
Σ−1(x − µy)(x − µy)T

}〉

p(x,y)
+

1

2
log |Σ−1| + const. (10)

Here Σ ∈ R
|x|×|x| is a function of the conditional p(y|x). Clearly, if the log

eigenspectrum of the inverse covariance of the decoder is constrained to satisfy
∑

i=1,...,|x|

log li(Σ
−1) =

∑

i=1,...,|x|

〈log li(Fx)〉p(x), (11)

where {li(Σ
−1)} and {li(Fx)} are eigenvalues of Σ−1 and Fx respectively, then

the lower bound (10) reduces to the objective (8) amended with the average
quadratic reconstruction error

Ĩ(x, y) = −
1

2

〈
tr

{
Σ−1(x − µy)(x − µy)T

}〉

p(x,y)
︸ ︷︷ ︸

reconstruction error

+
1

2
〈log |Fx|〉p(x)
︸ ︷︷ ︸

Fisher criterion

+const. (12)



Arguably, it is due to the subtraction of the non-negative squared error that
(10) remains a general lower bound independently of the parameterization of
the model and spectral properties of Fx. Another principal advantage of the
variational approach to information maximization is the flexibility in the choice
of the decoder [1].

5 Experiments

Variational Information Maximization vs Fisher criterion

In the first set of experiments we were interested to see how the value of the
true MI changed as the parameters were updated by maximising the Fisher
criterion ĨF (x, y) and the variational bound Ĩ(x, y). The dimension |y| was set to
be small, so that the true I(x, y) could be computed. Fig. 1 illustrates changes in
I(x, y) with iterations of the variational and Fisher-based learning rules, where
the variational decoder was chosen to be an isotropic linear Gaussian with the
optimal weights (3). We found that for |x| ≤ |y| (Fig. 1 (left)), both approaches
tend to increase I(x, y) (though the variational approach typically resulted in
higher values of I(x, y) after just a few iterations). For |x| > |y| (Figure 1 (right)),
optimization of the Fisher criterion was numerically unstable and lead to no
visible improvements of I(x, y) over its starting value at initialization.

Variational IM: stochastic representations of the digit data

Here we apply the simple linear isotropic Gaussian decoder to stochastic cod-
ing and reconstruction of visual patterns. After numerical optimization with
an explicit constraint on the channel noise, we performed reconstruction of 196-
dimensional continuous visual stimuli from 7 spiking neurons. The training stim-
uli consisted of 30 instances of digits 1, 2, and 8 (10 of each class). The source
variables were reconstructed from 50 stochastic spikes at the mean of the optimal
approximate decoder q(x|y). Note that since |x| > |y|, the problem could not be
efficiently addressed by optimization of the Fisher Information-based criterion
(9). Clearly, the approach of [4] is not applicable either, due to its fundamental
assumption of invertible mappings between the spikes and the visual stimuli. Fig.
2 illustrates a subset of the original source signals, samples of the corresponding
binary responses, and reconstructions of the source data.

6 Discussion

We described a variational approach to information maximization for the case
when continuous source stimuli are represented by stochastic binary responses.
We showed that for this case maximization of the lower bound on the mutual
information gives rise to a form of Hebbian learning, with additional factors
depending on the source and channel noise. Our results indicate that other ap-
proximate methods for information maximization [7], [5] may be viewed as ap-
proximations of our approach, which, however, do not always preserve a proper



0 10 20 30 40 50 60 70 80 90
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
True MI for I(x,y) and I

F
(x,y) objective functions, |x|=3, |y|=5

Variational IM: I(x,y)
Fisher criterion: I

F
(x,y)

0 10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
True MI for I(x,y) and I

F
(x,y) objective functions, |x|=7, |y|=5

Variational IM: I(x,y)
Fisher criterion: I

F
(x,y)

Fig. 1. Changes in the exact mutual information I(x, y) for parameters of the coder
p(y|x) obtained by maximizing the variational lower bound and the Fisher information
criterion for M = 20 training stimuli. Left: |x| = 3, |y| = 5 Right: |x| = 7, |y| = 5. In
both cases, the global maximum is given by I⋆ = log M ≈ 3.0.

Fig. 2. Left: a subset of the original visual stimuli. Middle: 20 samples of the corre-
sponding spikes generated by each of the 7 neurons. Right: Reconstructions from 50
samples of neural spikes (with soft constraints on the variances of firings).

bound on the mutual information. We do not wish here to discredit generally the
use of the Fisher Criterion, since this can be relevant for bounding reconstruc-
tion error. However, for the case considered here as a method for maximising
information, we believe that our method is more attractive.
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