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Abstract

Variational methods have proved popular and effective for inference and learning in intractable

graphical models. An attractive feature of the approaches based on the Kullback-Leibler divergence

is a rigorous lower bound on the normalization constants in undirected models. In the suggested work

we explore the idea of using auxiliary variables to improve on the lower bound of standard mean field

methods. Our approach forms a more powerful class of approximations than any structured mean

field technique. Furthermore, the existing lower bounds of the variational mixture models could be

seen as computationally expensive special cases of our method. A byproduct of our work is an efficient

way to calculate a set of mixture coefficients for any set of tractable distributions that principally

improves on a flat combination.

1 Introduction

Probabilistic graphical models provide a convenient framework for the graphical representation of joint
probability distributions via local constraints, and facilitate computation of many quantities of interest
required for both inference and learning. Such a probabilistic treatment of uncertainty offers a consistent
and principled approach to inference in complex domains. However, many distributions used to model
practical domains are inherently intractable. For example, for distributions p(x) of the (Boltzmann) form

p(x) = exp{E(x)}/Z, Z =
∑

x

exp{E(x)}, (1)

the complexity of evaluating the partition function (normalization constant) Z is exponential in the
size of the largest clique in the associated junction tree Lauritzen and Spiegelhalter (1988). For dense
graphs the exact evaluations are in general computationally infeasible, and approximations need to be
considered. In this paper we focus on approximate inference, specifically the computation of lower bounds
on normalization constants, which can also be used to approximate marginals of a formally intractable
distribution.

Variational approximations have been extensively used in physics and engineering and more recently
applied to approximate inference and learning in intractable graphical models (see e.g. Jordan et al.
(1998); Barber and Wiegerinck (1998); Wainwright et al. (2002)). In this context they were shown
to result in relatively simple dual representations of the induced optimization problems. Their other
advantage for graphical models is availability of rigorous bounds on the normalizing constant (Jaakkola
and Jordan, 1996).

A popular class of such approximations is based on the Kullback-Leibler divergence

KL(q(x)‖p(x)) = 〈log q(x)〉q(x) − 〈log p(x)〉q(x) ≥ 0. (2)
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Here 〈. . .〉q(x) denotes an average over q(x), and the bound is saturated if and only if q(x) = p(x). In the
case of the Boltzmann distribution (1), non-negativity of the KL divergence (2) yields the well-known
class of lower bounds

logZ ≥ 〈− log q(x)〉q(x) + 〈E(x)〉q(x), (3)

where q(x) is typically restricted to a class of tractable distributions and varied to obtain the tightest
bound within the tractable class. Coupled with an upper bound on the normalizing constant (Wainwright
et al., 2002), expression (3) may be used for bounding expectations in the original model. A further use
for this procedure is to provide a lower bound on the marginal likelihood in situations of observed and
unobserved variables, which is a natural derivation and extension of the EM procedure (Neal and Hinton,
1998).

1.1 Existing Variational Approximations

The computational tractability of the bound (3) depends on the choice of the approximating distribution
q(x). The simplest choice is given by the factorized mean field model (see Figure 1 (a), (b)) with
qMF (x) =

∏

i q(xi), which discards all the edges from the original graph. This results in the simplest
form of the bound (3). However, the bound may be inaccurate when the variables in the true distribution
are strongly correlated. Moreover, factorized approximations of distributions of the exponential family
are unimodal. This implies a fundamental limitation of the mean field approximation in the case when
p(x) is multi-modal, since significant mass contributing to the partition function may be missed.

One way to go beyond the factorized assumption for q(x) is to consider a structured mean field approxima-
tion (Ghahramani and Jordan, 1995; Barber and Wiegerinck, 1998) which retains some of the structure of
p(x). Often it is assumed that q(x) has a sparse graphical representation (e.g. it is a (poly)tree, see Figure
1 (c)), which typically leads to an improvement on the bound at a moderate increase in computational
cost. Note, however, that discarded edges in q(x) introduce conditional independencies which may not
exist in the original distribution p(x).

Another approach examined recently (Lawrence et al., 1998; Jaakkola and Jordan, 1998) uses mixtures of
mean field type models (see Figure 1 (d)). This is a powerful extension of the standard factorized approx-
imation, since the resulting approximating distribution q(x) is in general multi-modal and not factorized
in x. However, in general optimization of the bound (3) in this case requires minimization of the KL diver-
gence between two fully connected distributions p(x) and q(x), which requires a formally computationally
intractable evaluation of the entropy of the mixture H(x). Further approximations suggested in Lawrence
et al. (1998); Jaakkola and Jordan (1998); El-Hay and Friedman (2002) circumvent the computational
intractability of variational mixture approximations by relaxing (3) at the cost of introducing additional
variational parameters. Unfortunately, unless all the mixture components q(x|y) have the same tractable
structure, optimization of the resulting bound on logZ is numerically unstable, which makes it diffi-
cult to generalize the existing results to variational mixtures of arbitrarily structured tractable experts.
Moreover, additional variational parameters increase the computational cost of optimization.

2 Auxiliary Variational Method

The primary goal of this work is to extend the idea of using augmented variable spaces in a variational
context. Note that the computational problems of the variational mixture approximations arise from
the fact that marginalization of the mixture labels y from the joint distribution q(x, y) results in a fully
connected marginal q(x) (see Figure 1 (d)). Indeed, computation of the bound on logZ in this case
requires minimization of the KL divergence between two fully-connected distributions (see expression
(2)). It is intuitive that from the computational viewpoint it would be significantly more beneficial to
retain the structural form of the joint distribution and use q(x, y) as an approximation. In this case in
order for the bound (3) to be well-defined, we introduce auxiliary variables y to the target distribution.
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Figure 1: (a) A fully connected pairwise Markov network representing the intractable distribution p(x);
(b) standard mean field approximation qMF (x); (c) structured mean field approximation qSMF (x); (d)
mixture of mean field models. [All the variables x are coupled through the mixture label y. The dotted
lines serve to indicate that the marginal qMMF (x) is in general fully connected.]
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Figure 2: A special case of the auxiliary variational framework – an auxiliary mean field approximation.
Here the target distribution p(x, y) is approximated by q(x, y), which is structured in the augmented space.
Note that the marginal p(x) expressed from p(x, y) is identical to the original fully connected pairwise
target shown on Figure 1 (a).

This can be readily done in such a way that the marginal p̃(x) of the joint p(x, y) has the same graphical
structure as the original target p(x) (see Figure 2). Then we minimize the KL divergence between q(x, y)
and p(x, y) in the joint variable spaces. Note that in contrast to standard structured approximations
all the variables x of the marginal q(x) remain fully connected. However, similarly to structured mean
field techniques, our auxiliary variational method does not require evaluations of the computationally
intractable entropy of the mixture H(x). As we later show, this also applies to the cases when q(x, y) has
loops (as long as each q(x|y) remains structured).

Another motivation for our work on variational auxiliary approximations is the reported success of aux-
iliary sampling techniques, such as the Swendsen-Wang (Swendsen and Wang, 1987), partial decoupling
(Higdon, 1998), and Hybrid Monte-Carlo (e.g. Neal (1993)) algorithms. It has been shown that by
extending the original variable space with auxiliary variables and drawing samples from the joint distri-
bution p(x, y) in the augmented space, one can achieve a significant improvement over standard MCMC
approaches. The purpose of the auxiliary variables in this context is to capture (structural) informa-
tion about clusters of correlated variables. It is therefore hoped that an auxiliary variational method
performing approximations in the augmented space may lead to a natural improvement over standard
approaches.

Indeed, we demonstrate that the auxiliary variational technique forms a more powerful class of approx-
imations than any structured mean field approach. Moreover, the method offers an efficient way of
calculating a set of mixture coefficients for any choice of tractable approximators (for example, trees with
different structures). These coefficients may be used to form a mixture which is principally better than a
single best tractable approximator or their flat combination. Finally, we show that our approach provides
a computationally simple extension of the existing variational mixture methods.
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2.1 Optimizing the Auxiliary Variational Bound

Let p(x, y) = p(x)p(y|x) define the joint distribution of the original variables x and auxiliary variables y

in the augmented {x, y} space. From the divergence KL(q(x, y)‖p(x, y)) in the joint space it is easy to
obtain an expression for the lower bound on the log partition function of p(x) = exp{E(x)}/Z, given by

logZ ≥ −〈log q(x, y)〉q(x,y) + 〈E(x)〉q(x) + 〈log p(y|x)〉q(x,y), (4)

where p(y|x)
def
= p(y|x;Ψ) is an auxiliary conditional distribution parameterized by Ψ. Equivalently, (4)

may be written as

logZ ≥
∑

y

q(y)
[

〈E(x)− log q(x|y)〉q(x|y)
]

+ Ĩ , Ĩ =
∑

x

∑

y

q(x, y) log
p(y|x)

q(y)
. (5)

The first of the two terms in expression (5) is a convex summation of the standard lower bounds (3)
on logZ for the {x}-variables, which cannot improve on the tightest individual bound in the set. The
auxiliary variational lower bound on logZ may improve on the standard bounds only if Ĩ > 0. In the case
that the auxiliary space y contains no information about x, i.e. p(y|x) = p(y), it is straightforward to show
that the method reproduces the standard variational bound which uses the single best approximation
q(x|y). If p(y|x) ≡ q(y|x) then Ĩ defines the non-negative mutual information between the original variables
x and the auxiliary variables y. However, this specification leads to computational difficulties of evaluating
or bounding the intractable entropy of the mixture H(y).

We can attempt to avoid computational difficulties by imposing appropriate parametric constraints on
p(y|x;Ψ) and maximizing the bound (5) with respect to the parameters or clique potentials Ψ, the
marginal q(y), and the conditionals q(x|y). The general optimization algorithm in this case is given as
follows:

1. Choose the auxiliary conditional p(y|x). For the remainder, we choose

p(y|x) = exp{Ψ(y; x)}/Zy|x, Zy|x =
∑

y

exp{Ψ(y; x)}, (6)

though more general distributions may potentially be considered.

2. Initialize q(x|y), q(y), and parameters Ψ of p(y|x).

3. For the fixed q(y, x), obtain Ψnew by solving for zeros of

∂ logZ/∂Ψ = 〈∂ log p(y|x)/∂Ψ〉q(x,y), (7)

or performing numerical ascent on logZ for Ψ [see the bound (5)].

4. For the fixed pnew(y, x)
def
= p(x)p(y|x;Ψnew) and q(y) set

qnew(x|y) ∝ pnew(y, x) (8)

for all instances y.

5. For the fixed pnew(y, x) and qnew(x|y) set

qnew(y) ∝ exp

{

−
∑

x

qnew(x|y) log
qnew(x|y)

p(x)p(y|x;Ψnew)

}

. (9)

6. Iterate steps 3–5 untill a termination criterion is met.
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Note that for a parametric auxiliary conditional p(y|x) step 3 is analogous to the M-step of the generalized
EM algorithm (Neal and Hinton, 1998), while steps 4 and 5 are analogous to the E-step. An update rule
for each term was obtained from (5) by taking functional derivatives while keeping other terms fixed.

Up to this point, the results are completely general. However, for computational reasons it is fundamen-
tally important to impose constraints on the auxiliary conditional p(y|x) and the approximate joint
q(x, y). If both distributions are in a tractable family (for example, if each node yi has a small number
of x-parents), the bound (5) may be computed and optimized exactly. Another case leading to exact
computations is when p(y|x) ∼ N (Ψx,Σ), though in this case q(x|y) should also be parameterized.

If one wishes to have a large number of parental variables x influencing y, approximations need to be
employed. For the special case of distributions of the form (6), we can utilize the standard linear upper
bound log x ≤ mx− logm− 1. This transforms the objective (5) to

logZ ≥ 1 +
∑

y

q(y)〈E(x)− log q(x, y)〉q(x|y) +
〈

Ψ(y; x) + µ(x; y)− eµ(x;y)Zy|x

〉

q(x,y)
(10)

where eµ(x;y) is an additional variational functional of the exponential form.

In general, optimization of the bound (10) is numerically unstable and computationally expensive. How-
ever, as we show below, by imposing parametric or structural constraints on p(y|x) we may obtain a
number of efficient approximations which obviate a recourse to (10).

2.2 Specific Auxiliary Representations

Here we briefly outline variational auxiliary representations for jointly Gaussian distributions, binary
MRFs, and structured auxiliary models.

Jointly Gaussian Spaces

In order to test applicability of auxiliary variational approximations we may consider the simplest case
of normally distributed data p(x) ∼ N (0,Σx) approximated by the auxiliary variational model with a
one-dimensional Gaussian auxiliary variable.

Assume that the approximating distributions are parameterized as

p(y|x) ∼ N (uT x+ b, s2), q(y) ∼ N (µy, σ
2
y), q(xi|y) ∼ N (µi(y), σ

2
i ). (11)

By self-consistently solving (8) for parameters of q(xi|y) it is possible to show that the optimal variational
conditional means are given by linear functions of the auxiliary variable y, which can be written explicitly
as µi(y) = Θiy + ci. By performing some algebraic manipulations we can transform the fixed point
equations (7) – (9) to a system of non-linear equations for the parameters of the auxiliary conditional
p(y|x) and the approximate joint q(x, y) as

1. q(xk|y) ∼ N (Θky + ck, σ
2
k):















σ2
k =

[

wkk + u2
k/s

2
]−1

Θk = σ2
k

(

uk −
∑

i6=k Θi
[

uiuk/s
2 + wik

]

)

ck = σ2
k

(

−
∑

i6=k ci
[

uiuk/s
2 + wik

]

− buk/s
2
)

(12)

2. q(y) ∼ N (µy, σ
2
y):







σ2
y =

{

(1− uTΘ)2/s2 +ΘTWΘ
}−1

µy = σ2
y

[

(b+ cT u)(1− uTΘ)/s2 −ΘTWc
] (13)
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3. p(y|x) ∼ N (uT x+ b, s2):

s2 =

[

∑

i

Θ2
i /σ

2
i + 1/σ

2
y

]−1

, ui = Θis
2/σ2

i , b = −s2
∑

i

ciΘi/σ
2
i + µys

2/σ2
y, (14)

where W = {wij} = Σ
−1
x is the inverse covariance matrix of the data. This may be viewed as an

alternative formulation of the 1-factor factor analysis model.

Discrete Spaces with Parametric Auxiliary Distributions

If the auxiliary space is given by a single multinomial variable y ∈ {1, . . . ,M}, a natural choice for p(y|x)
is to use a softmax type representation

p(yk|x) ∝ exp
{

f(xT u(k) + b(k))
}

, U = {u(1), . . . , u(M)} ∈ R
|x|×M , b ∈ R

M . (15)

Here f(x;U, b) is some differentiable function and p(yk|x) is the probability of the auxiliary variable y
being in state k. Although the expectation 〈log p(yk|x)〉q(x,y) is in general intractable, we can make a use
of the transformed bound (10). A significantly cheaper alternative is to perform optimization of (5) by
approximating the term at log p(yk|〈x〉q(x,y)). In practice this is often reasonably accurate, since p(y|x)
is typically uni-modal.

A potential disadvantage of using multinomial univariate y-spaces with the softmax parameterization
(15) of p(y|x) is the large number of parameters, namely |x + 1| ×M . One way to decrease it is to use
a multivariate factorial representation of the auxiliary variables. In the case when |x| is large, p(y|x) =
∏

k p(yk|x), and each factor uses a simple (generalized) linear type dependency

p(yk|x) = p(yk|ak), ak
def
= fk(x

T u(k) + b(k)), (16)

the Gaussian field approximation Barber and Sollich (2000) can be employed. From the Central Limit
Theorem we can assume approximate Gaussianity of the field ak and approximate the expectation
〈log p(yi|x

i)〉q(x|yk) by performing 1-D Gaussian integration of the general form
∫

a
f(a)p(a), where p(a) ∼

N (µa, σ
2
a). The mean and variance of the fields are readily relatable to first and second order moments

of q(x|yk).

In practice, the described approximations do not lead to significant deviations and are shown to be both
accurate and efficient (Agakov and Barber, 2003). Probably the greatest disadvantage of these relaxations
is due to the fact that for any realistic limit of |x| the bound is no longer strict. One way to address
this is to impose additional structural constraints on the conditionals by limiting the number of parental
variables for each factor.

Discrete Spaces with Structured Auxiliary Distributions

The use of sparsely-connected structured distributions q(x) in the standard variational framework can
greatly improve the accuracy of the bound. Similar improvements in performance may be obtainable
from using sparse q(x|y) and p(y|x), which generally result in a tractable objective (5).

Indeed, the potentially problematic term in the bound (5) is the average of the auxiliary conditional over
the joint approximating distribution 〈log p(y|x)〉q(x,y). However, since we are free to choose the form of the
distribution p(y|x), we can limit its parental structure so that the average 〈log p(y|x)〉q(x,y) is tractable.
For example, we may assume the factorial form for p(y|x) and constrain the number of x-parents πx(yi)
of each auxiliary variable yi, so that

p(y|x) =

|y|
∏

i=1

p(yi|πx(yi)). (17)
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If the approximating distribution q(x|y) is also sparse and factorized in x, then all the terms in the
objective (5) may be computed exactly.

Finally, note that if all components q(x|y) have the same structure for all values of y then the joint
q(x, y) is also structured, and the steps (8), (9) may be combined. Then if p(y|x) is fixed, the auxiliary
variational method will be performing a structured approximation in the augmented space, and the
existing techniques (e.g. Ghahramani and Jordan (1995); Barber and Wiegerinck (1998)) may be used.

3 Relation to Variational Mixture Models

In Section 2 we performed optimization of the bound on the log partition function subject to parametric
constraints on the auxiliary conditional. Fundamentally, it is exactly due to the choice of a constrained
p(y|x) that computationally efficient exact and approximate evaluations of the bound (5) are possible. In
cases when there are no utilizable parametric constraints on p(y|x), optimization of (5) requires signifi-
cantly more expensive relaxations, such as the one given by (10).

Formally, (10) generalizes the term in the objective criterion

Ĩ(x, y) ≥

〈

log
q̃(x|y)

q(y)

〉

q(x,y)

+ 〈log λ(y)〉q(y) + 1−
∑

y

λ(y)
∑

x

q̃(x|y)qmix(x) (18)

used by all the (known to us) variational mixture approaches (Jaakkola and Jordan (1998); Bishop et al.
(1998); Lawrence et al. (1998); El-Hay and Friedman (2002)). The resulting bound is further optimized
with respect to the variational functionals λ(y), “smoothing” conditionals q̃(x|y), and parameters of
the mixture q(y) and q(x|y). While, theoretically, one could use (18) to variationally fit a mixture of
(hyper)trees of different structures (as opposed to the mixture of completely factorized Lawrence et al.
(1998) or identically structured El-Hay and Friedman (2002) models), the smoothing distributions will
generally still need to be factorized, since the final term in (18) would otherwise be intractable. Also in
practice, if some of the conditionals q(x|y) have different structures, the optimization of (18) in general
becomes numerically unstable (e.g. Bishop et al. (1998) show that it involves non-factorized ratios of
summations of exponentially small terms).

By permitting a tractable choice of the auxiliary conditional distribution p(y|x), the auxiliary variational
method generalizes a variational mixture model in the same way as the variational EM algorithm (Neal
and Hinton, 1998) generalizes the standard expectation maximization (Dempster et al., 1977). In addition
to simplification of the theoretical framework, this can lead to a significant improvement in computational
efficiency and numerical stability of the optimization. Moreover, it suggests fundamental extensions of the
variational mixture approaches to factorial and structured auxiliary spaces. This is interesting, because
it potentially allows us to boost the effective number of mixture states while remaining in the bounds of
computational tractability (for example, when p(y|x) and q(y|x) are constrained to be reasonably sparse).
A further pleasing result from the auxiliary framework, demonstrated in Section 4, is a simple and fast
way to re-weight any set of tractable distributions, which principally improves on any single structured
approximation.

4 Experimental Results

Here we summarize some of the experimental results comparing performance of the auxiliary variational
framework with the standard factorized approaches. Also, for discrete variable spaces we apply our
method to computing reweightings of fixed approximations q(x|y) with different structures.
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Figure 3: Approximation of the Gaussian data covariance [(a), (d)] with the auxiliary [(b), (e)] and
traditional mean field [(c), (f)] approaches. Top: Σx corresponds to the data covariance of a 1-factor
Factor Analysis model; Bottom: Σx is unstructured.

4.1 Approximating Covariance of a Gaussian

In order to verify efficiency of the auxiliary mean field approximation for normally distributed data we
experimentally compared its performance with the standard mean field approximation. To quantify the
performance, we computed the KL divergence between q(x) ∼ N (µ,ΣQ) and p(x) ∼ N (0,W−1), which
is given by

KL(q‖p) = −
1

2
log |ΣQW|+

1

2
tr(W[ΣQ + µµ

T ]− I). (19)

Figure 3 shows typical covariances obtained by auxiliary and standard MF models for structured 1-factor
Factor Analysis (top) and unstructured (bottom) 10-dimensional data covariance matrices. After a few
iterations of equations (12) – (14) the KL divergences are KL(q‖p)MF ≈ 1.6077, KL(q‖p)AMF ≈ 0.0002
for the structured and KL(q‖p)MF ≈ 0.7484, KL(q‖p)AMF ≈ 0.2991 for the unstructured case. As we
see, the auxiliary mean field approximation results in a significantly higher accuracy than the standard
mean field approach.

4.2 Inference in Discrete Markov Networks

Here we demonstrate systematic changes in the auxiliary variational estimates of the second-order mo-
ments for discrete variable spaces. Throughout the simulations, it was assumed that p(x) is a pairwise
Markov network with the energy E(x) = xTWx+ xT b and x ∈ {−1, 1}|x|. The weight matrix W was con-
strained not to be positive-definite, so that p(x) was inherently multi-modal. In the following experiments
it is assumed that y ∈ {1, . . . ,M} is multinomial and p(y|x) has a softmax form (15) (though analogous
experiments with the factorial auxiliary spaces led to principally similar results). In all cases the average
〈log p(y|x)〉q(x,y) was approximated at the mean of p(y|x).

By analogy with Lawrence et al. (1998), we generated 100 biases b ∈ I
10 and matrices W ∈ I

10×10 of
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Figure 4: (a) Systematic changes in the mean squared error for estimates of the second-order moments
with M ; (b) Top: re-weightings of the fixed structured approximators; Bottom: the bounds on logZ for
each individual tree.

the 10-D pairwise Markov network p(x), where I defines the uniform range [−1, 1]. Then we computed
the squared errors ε(M) between exact and estimated second moments 〈xixj〉, averaged for all networks
and all i 6= j. Note that for M = 1 the auxiliary variational representation (5) is equivalent to the mean
field model. As can be seen from Figure 4 (a), we obtain a systematic improvement in the accuracy with
an increase in M . The scale of the changes in the accuracy is different from that reported by Lawrence
et al. (1998), whose mean field error ε(1) was approximately 0.15, though we observe qualitatively similar
improvements. This discrepancy is undoubtedly due to details of the optimization approaches, and does
not detract from our conclusion that the auxiliary method conveys a systematic improvement.

4.3 Reweighting Structured Approximators

Finally, we applied our framework to computing reweightings of fixed structured approximations q(x|y).
For a uniformly chosen W ∈ I

10×10, we generated K = 10 random spanning trees with the weights W(m)

such that W
(m)
ij =Wij for all i, j and m = 1, . . . ,K. Then we re-weighted the trees by recomputing q(y)

according to
q(yk) ∝ exp

{

〈E(x)− log q(x|yk) + log p(yk|x)〉q(x|yk)

}

, (20)

which follows directly from (9). Figure 4 (b) illustrates typical re-weightings of fixed structured approxi-
mators and the induced lower bounds on logZ for the case of the softmax parameterization of p(y|x) and
for fixed parameters of the auxiliary conditional (selected at uniform random on I). The corresponding
bounds in this case were Lr ≈ 8.38, Lu ≈ 8.87, Lb ≈ 8.33, and Lav ≈ 9.52 for the random, uniform,
best single, and auxiliary variational weightings respectively. Note that the single-step optimization of
(20) has a reasonable order of computational complexity [∼ O(|x|2)] and can be easily extended to high
dimensional approximations. Finally, we tried to optimize the standard bound (18) of the variational
mixture models with the differently structured conditionals q(x|y) and fully factorized smoothing factors
q̃(x|y). However, in this case even for |x| = 8 we often encountered numerical problems.

5 Summary

We have presented an approach that generalizes the standard Kullback-Leibler variational procedure to
the use of auxiliary variables, which provides a systematic improvement over the standard theory for any
structured approximation. We also showed that the approximations commonly employed by variational
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mixture models could be seen as special and more computationally expensive cases of our approach.
Furthermore, our method potentially avoids numerical difficulties present in other approaches. One way
to use it in practice is to find weightings for any set of tractable distributions.
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