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Abstract. An attractive feature of variational methods used in the con-
text of approximate inference in undirected graphical models is a rigorous
lower bound on the normalization constants. Here we explore the idea of
using augmented variable spaces to improve on the standard mean-field
bounds. Our approach forms a more powerful class of approximations
than any structured mean field technique. Moreover, the existing varia-
tional mixture models may be seen as computationally expensive special
cases of our method. A byproduct of our work is an efficient way to cal-
culate a set of mixture coefficients for any set of tractable distributions
that principally improves on a flat combination.

1 Introduction

Probabilistic treatment of uncertainty provides a principled way of reasoning in
stochastic domains. Unfortunately, mathematical consistency often comes at a
price of inherent intractability of many interesting models, such as Boltzmann
machines

p(x) = exp{−E(x)}/Z, Z =
∑

x

exp{−E(x)}. (1)

In general the complexity of evaluating the partition function Z is exponential in
the size of the largest clique in the associated junction tree. For dense models the
exact evaluations are in general computationally infeasible, and approximations
need to be considered. In this paper we focus on computation of lower bounds
on Z, which may also be used to approximate formally intractable marginals.

Variational approximations have been widely used in physics and engineer-
ing and more recently applied to graphical modeling (e.g. [5]). In this context
they are typically used to obtain rigorous (but relatively simple) bounds on
the normalizing constant. A popular class of such methods is based on the KL-
divergence

KL(q(x)‖p(x)) = 〈log q(x)〉q(x) − 〈log p(x)〉q(x) ≥ 0, (2)

where 〈. . .〉q(x) denotes an average over q(x), and the bound is saturated if and
only if q(x) ≡ p(x). In the case of the Boltzmann distribution (1), non-negativity
of (2) yields the well-known class of lower bounds

log Z ≥ −〈log q(x)〉q(x) − 〈E(x)〉q(x), (3)
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Fig. 1. (a) A fully connected network representing the intractable p(x); (b) standard
mean field model qMF (x); (c) structured mean field model qSMF (x); (d) a mixture of
mean field models [all the variables x are coupled through the mixture label y.]
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Fig. 2. An auxiliary MF model. The target p(x, y) is approximated by q(x, y), which is
structured in the augmented space. [Note that the marginal p(x) expressed from p(x, y)
is identical to the original fully connected pairwise distribution shown on Figure 1 (a).

where q(x) is typically restricted to lie in a tractable family and varied to ob-
tain the tightest bound within the family. Coupled with an upper bound on Z,
expression (3) may be used for bounding marginals of p(x). This procedure may
also be used to optimize a lower bound on the marginal likelihood in partially
observable models, which is a natural generalization of the EM algorithm [7].

1.1 Existing Variational Approximations

The tractability of the bound (3) depends on the choice of the approximating
distribution q(x), which is in the simplest case given by the factorized mean field

(MF) model qMF (x) =
∏

i q(xi) (see Fig. 1 (a), (b)). Factorized approximations
may be simple, but inaccurate when p(x) is strongly coupled; moreover, due to
uni-modality they may miss a significant mass contributing to Z. One way to go
beyond the factorized assumption for q(x) is to consider a structured mean field

approximation, which also introduces conditional independencies, but retains
some of the structure of p(x). Often it is assumed that q(x) has a sparse graphi-
cal representation (e.g. it is a (poly)tree, see Figure 1 (c)), which typically leads
to an improvement on the bound at a moderate increase in computational cost.
Another approach examined recently [4], [6] uses mixtures of mean field type
models (see Figure 1 (d)). This is a powerful extension of factorized approxima-
tions, since the resulting q(x) is in general multi-modal and coupled in x (Fig.
1); however, in this case the bound (3) is itself intractable. Known techniques



[6], [4], [3] handle the intractability by effectively using the Jensen’s bound on
top of (3), which is computationally costly and numerically unstable in practice
unless all the mixture components q(x|y) have the same structure.

2 Auxiliary Variational Method

Intuitively, evaluation of the bound (3) on log Z for variational mixture approxi-
mations requires minimization of the KL-divergence between two fully-connected
distributions (see (2)). However, computationally it could be useful to retain a
sparser structural form of q(x, y) and use it as an approximation. To do this, we
introduce auxiliary variables y to the target distribution in such a way that the
marginal p̃(x) of the augmented model p(x, y) has the same graphical structure
as the original target p(x) (see Fig. 2). Then we minimize the KL-divergence
between q(x, y) and p(x, y) in the joint variable spaces. This case is different
from standard structured approximations, as all the variables x of the marginal
〈q(x|y)〉q(y) remain fully connected. However, similarly to structured mean field
methods, the approximation q(x, y) in the joint space is constrained to be sparse.

Another motivation for this work is the reported success of auxiliary sampling
techniques, such as Hybrid Monte-Carlo or the Swendsen-Wang [8] algorithms.
It has been shown that by augmenting the original variable space with auxiliary
variables and sampling from joint distributions in the augmented spaces, one
can achieve a significant improvement over standard MCMC approaches. The
purpose of the auxiliary variables in this context is to capture (structural) in-
formation about clusters of correlated variables. It may therefore be hoped that
an auxiliary variational method performing approximations in the augmented
space {x, y} may improve on simple approximations in {x}.

2.1 Optimizing the Auxiliary Variational Bound

Let p(x, y) = p(x)p(y|x) define the joint distribution of the original variables x

and auxiliary variables y in the augmented {x, y} space. From the divergence
KL(q(x, y)‖p(x, y)) in the joint space it is easy to obtain an expression for the
lower bound on the normalizing constant of (1), which is given by

log Z ≥
∑

y

q(y)
[

〈−E(x) − log q(x|y)〉q(x|y)
]

+ Ĩ , Ĩ =
∑

x

∑

y

q(x, y) log
p(y|x)

q(y)
(4)

where p(y|x) is an arbitrary auxiliary conditional distribution. Clearly, (4) de-
composes as a convex sum of the standard lower bounds with approximations
q(x|y) and a lower bound Ĩ(x, y) on the mutual information. This may be used
to improve on a single best (tractable) approximation q(x|y), which is recon-
structed by trivially setting p(y|x) ≡ p(y). Note that (4) is tractable as long as
p(y|x), q(y), and q(x|y) are constrained to lie in tractable families – there is no
need to use further variational relaxations in this case. One tractable choice for
the auxiliary mapping p(y|x) is a Gaussian (in this case q(x|y) should also be



parameterized as y is real-valued). Another case leading to exact computations
is obtained when each node yi in p(y|x) has a small number of x-parents, and
q(x, y) is a tree. Some other parameterizations may not lead to exact bounds, but
may nevertheless result in efficient and practically useful approximations (see [1]
for discussions and derivations of the EM algorithms for some of these cases).

2.2 Specific Auxiliary Representations

Here we briefly look at two useful choices of p(y|x) for pairwise Markov networks

with E(x)
def
= xT Wx. As usual, we assume that q(x, y) is tractable, i.e. the only

problematic term in (4) is the auxiliary expectation 〈log p(y|x)〉q(x,y).

Parametric Constraints on the Auxiliary Distributions

If the auxiliary space is given by a single multinomial variable y ∈ {1, . . . ,M},
a natural choice for p(y|x) is to use a softmax type representation

p(yk|x) ∝ exp
{

f(xT u(k) + b(k))
}

, U = {u(1), . . . , u(M)} ∈ R
|x|×M , b ∈ R

M (5)

where f(x;U, b) is some differentiable function and p(yk|x) is the probability of
the auxiliary variable y being in state k. Unfortunately, if the weight vector
u(k) is dense, one may need to bound 〈log p(yk|x)〉q(x,y) (a cheaper alternative
is to approximate such terms as log p(yk|〈x〉q(x)) or use a multivariate factorial
representation of the auxiliary variables p(y|x) =

∏

i p(yi|x) with the Gaussian

field [2] approximation of 〈log p(yi|x)〉q(x|y) – see [1] for details). For dense weights
such approximations usually do not lead to significant deviations of the objective
and are shown to be both accurate and efficient [1]; however, the optimized
function is no longer a strict bound on log Z. We now consider a tractable case
when p(y|x) has constraints on the parental structure for each auxiliary variable.

Structural Constraints on Auxiliary Distributions

If πx(yi) and πy(yi) are x- and y-parents of yi in the mapping p(y|x), we get

〈log p(y|x)〉q(x,y) =
∑

i=1,...|y|

〈log p(yi|πx(yi),πy(yi))〉q(yi,πy(yi),πx(yi))
. (6)

The representational complexity of each conditional in (6) in this case is of
the order of s|πx(yi)|+|πy(yi)|, where s is the number of states (for simplicity
assumed to be equal for each variable). Since we are free to choose the form of the
distribution p(y|x), we can limit its parental structure so that |πx(yi)|+ |πy(yi)|
is small. Clearly, for discrete variables this allows an exact representation of the
conditionals. It is also clear that the computational complexity of evaluating
(6) is limited by the cost of marginalization of |x| + |y| − |πx(yi)| − |πy(yi)| − 1
variables from q(x, y), which is tractable as long as q(x, y) is in a tractable family.

E.g., in the special case when q(y, x) =
∏|y|

l=1 q(yl)
∏|x|

j=1 q(xj |ρ(xj)) is a polytree
with a small number of y-parents ρ(xj), the marginalization is exponential in
|ρ(πx(yi))\{πy(yi)∪yi}|, which is acceptable if both p(y|x) and q(x|y) are sparse.



3 Relation to Variational Mixture Models

The existing variational mixture approaches may be viewed as a special case
of the unconstrained auxiliary formulation (where p(y|x) ≡ q(y|x)). In this case
(4) is intractable even for factorized mixtures with a few components (as |x|
is large). This requires further factorized relaxations, such as the ones used by
[4], [6], [3]. Also, unless all the components q(x|y) have identical structures, the
optimization of the existing bounds may become numerically unstable (as it
requires computing non-factorized summations of exponentially small terms [6]).

In our approach, we optimize the bound on log Z subject to constraints on
the auxiliary conditional. By first constraining p(y|x) to be tractable and then
optimizing the bound (4), we essentially incorporate the constrained Blahut-
Arimoto algorithm into the variational inference framework. Arguably, our ap-
proach generalizes variational mixture approximations similarly to the way that
the variational EM [7] generalizes the standard EM algorithm: by allowing a
flexibility in the choice of p(y|x), it improves numerical stability and helps to
significantly simplify the computations. Moreover, our method suggests a way
to extend variational mixture approaches to structured auxiliary spaces, which
may be useful for boosting the effective number of mixture states.

4 Experimental Results

Throughout the simulations, it was assumed that p(x) is a pairwise Markov net
with the energy E(x) = xT Wx + xT b and x ∈ {−1, 1}|x| (see [1] for details).

Reweighting Structured Representations: A by-product of our framework
is a simple and fast way to re-weight any set of differently structured (tractable)
distributions q(x|y), which principally improves on trivial combinations. For a
uniformly chosen W ∈ I

10×10, we generated K = 10 spanning trees with the

weights W(m) such that W
(m)
ij = Wij for all i, j and m = 1, . . . ,K. Then we

optimized (4) for q(y) assuming that q(x|yk) and p(yk|x) were fixed (see Fig. 3).
In this case the bounds were Lr ≈ 8.38, Lu ≈ 8.87, Lb ≈ 8.33, and Lav ≈ 9.52

for the random, uniform, best single, and auxiliary variational weightings respec-
tively. As expected, the auxiliary method leads to the tightest bound.

Structured Auxiliary Mappings: To investigate an influence of a structure
of p(y|x) on (4), we assumed a fixed q(x, y) with x ∈ {−1, 1}|x| and y ∈ {−1, 1}|y|.
The marginals q(yi) (flip rate) were fixed to be constant for all the nodes yi.
Fig. 3 (c) shows the improvement Ĩ (over the convex combination in (4)) as a
function of the flip rate for a model with |x| = 5, |y| = 10. The total number
of x- and y-parents of each yi was constrained to satisfy |πx(yi)| + |πy(yi)| ≤ 4.
We observed that some of the optimal auxiliary mappings were close to the
theoretically optimal (but generally intractable) q(x|y), though the choice of the
structure proved to be important (see [1] for details).
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Fig. 3. (a) Top: weights of the fixed structured approximations; Bottom: bounds on
log Z for each approximation; (b) influence of the structure of p(y|x) on Ĩ.

5 Summary

We have presented an approach that generalizes the standard KL- variational
procedure to the use of auxiliary variables, which provides a systematic improve-
ment over standard structured approximations. We have also showed that the
variational mixture approximations could be seen as special and more computa-
tionally expensive cases of our approach. Finally, we showed that our method can
be easily generalized to factorial and structural state representations. One way
to use it in practice is to find weightings for any set of tractable distributions.
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