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Abstract

Information maximization is a common framework of unsupervised learning,
which may be used for extracting informative representations y of the observed
patterns x. The key idea there is to maximize mutual information (MI), which is
a formal measure of coding efficiency. Unfortunately, exact maximization of MI is
computationally tractable only in a few special cases; more generally, approxima-
tions need to be considered. Here we describe a family of variational lower bounds
on mutual information which gives rise to a formal and theoretically rigorous ap-
proach to information maximization in large-scale stochastic channels. We hope
that the results presented in this work are potentially interesting for maximizing
mutual information from several perspectives. First of all, our method optimizes a
proper lower bound, rather than a surrogate objective criterion or an approxima-
tion of MI (which may only be accurate under specific asymptotic assumptions,
and weak or even undefined when the assumptions are violated). Secondly, the
flexibility of the choice of the variational distribution makes it possible to gener-
alize and improve simple bounds on MI. For example, we may introduce tractable
auxiliary variational bounds on MI, which may be used to improve on any simple
generic approach without altering properties of the original channel. Thirdly, the
suggested variational framework is typically simpler than standard variational
approaches to maximizing the conditional likelihood in stochastic autoencoder
models, while it leads to the same fixed points in its simplest formulation; this
gives rise to more efficient optimization procedures. Finally, in some cases the
variational framework results in optimization procedures which only require lo-
cal computations, which may be particularly attractive from the neuro-biological
perspective. Possibly the most important contribution of this work is a rigorous
and general framework for maximizing the mutual information in intrinsically
intractable channels. We show that it gives rise to simple, stable, and easily gen-
eralizable optimization procedures, which outperform and supersede many of the
common approximate information-maximizing techniques. We demonstrate our
results by considering clustering, dimensionality reduction, and binary stochastic
coding problems, and discuss a link to approximate statistical inference.
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sults are computed for |x| = 20, |y| = 40. The curves correspond
to the exact values of the bound Ĩ(x, y) for random structures of
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Chapter 1

Introduction

Possibly one of the most important tasks faced by an intelligent organism may
be formulated as learning about the environment, and using the knowledge to
address challenges offered by the external world. Knowledge about the world is
represented internally by means of synaptic structures or neural activations. Gen-
erally, it is believed that internal representations are formed in a way which allows
them to capture useful information about the external environment. The goal of
learning may in this case be formulated as finding informative representations
about the regularities occurring in the external world.

Many of machine learning methods address fundamentally similar tasks, where
one of the key goals is to find informative representations of the observations
about the environment. One obvious application related to modeling of biologi-
cal systems is learning neural population codes for a set of input stimuli. Some
other applications include speech analysis and object tracking, face recognition
and automated medical diagnostics, where the extracted representations can be
used for making important practical decisions. Unfortunately, the problem of
finding internal representations of the environment may become notoriously diffi-
cult in the presence of noise. In this thesis we consider a class of machine learning
methods making a recourse to information theory, and address the fundamental
computational problems of applying the methods for finding informative regular-
ities in stochastic environments.

1.1 Background

In recent years we witnessed a significant transformation of methods aimed at
designing intelligent systems. Historically, such methods were based mainly on
modeling heuristic expert knowledge rather than the problem domain. While
being sometimes efficient for addressing relatively simple problems of local infer-
ence, the approaches lacked formal mechanisms for resolving global queries not
representable in the basis of specified heuristics and axioms. Moreover, they could
not be easily applied in incomplete and uncertain domains, i.e. in the majority
of practically interesting and challenging situations (e.g. Jaynes (1996), Jensen
(1996)). Late 80s and early 90s were marked by an increased popularity of non-
symbolic methods and development of the learning paradigm, where one of the
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principal objectives was to define a utility function and optimize its expectation
with respect to a (generally, parametric) model of the environment. While defini-
tions of the objective criteria used by the earlier models were not always properly
understood, it was soon realized that many of the sensible optimization crite-
ria for supervised1 training of early connectionist models had strong probabilistic
foundations (e.g. Neal (1992), Bishop (1995)). The probabilistic view was impor-
tant, as it helped to shift the heuristics from the level of function definition to the
level of model specification, which was arguably easier to understand by the ma-
jority of experts. Moreover, it suggested a unifying framework for interpretation
and analysis of the regression and classification algorithms.

At the same time, a particular level of attention was paid to the development
of unsupervised2 learning techniques (see e.g. Hinton and Sejnowski (1999)),
where the idea was to learn statistical models, or extract statistical regularities
of the observations (see e.g. Dayan (2001) and references therein for a high-level
introduction). Possibly the largest class of the unsupervised methods is based on
estimation of probability densities of the observed data, where the fundamental
idea is to estimate parameters of a model which would give rise to the obser-
vations. Specifically, maximum likelihood methods aim at fitting a constrained
distribution p(x|Θ) to a set of the empirical observations {x} by estimating the
deterministic parameters Θ. One way of introducing constraints on p(x) is to
consider a generative latent variable model ML = p(x|y,Θx|y)p(y|Θy), where y
defines a vector of latent variables, p(y|Θy) is the marginal distribution of the
latent variables parameterized by Θy, and p(x|y,Θx|y) is the conditional distri-
bution parameterized by Θx|y. The goal of learning by maximizing the likelihood
would in this case involve fitting p(x|Θy,Θx|y) =

∫

y
p(y|Θy)p(x|y,Θx|y)dy to the

observed data, which would involve maximization of the likelihood for Θy and
Θx|y (see e.g. Everitt (1984), Hertz et al. (1991), Bishop (1995), Hinton and
Sejnowski (1999) for references, comprehensive descriptions of common unsuper-
vised learning techniques, and general discussions of density estimation methods).

Another class of unsupervised learning methods is based on the idea of finding
most informative descriptions y of the training patterns x, for example by learning
the optimal mapping p(y|x,Θy|x). The coding efficiency is typically quantified by

mutual information between x and y, which is defined as I(x, y)
def
= H(y)−H(y|x).

Here H(y|x)
def
= −

∫

x

∫

y
p(y|x,Θy|x)p(x) log p(y|x,Θy|x)dydx is the conditional en-

tropy and H(y)
def
= −

∫

y
p(y) log p(y)dy is the marginal entropy, which for discrete

variables may be thought of as measures of uncertainty (see a more detailed dis-
cussion in Section 1.3). Additionally, p(x) defines the distribution of the source
patterns, and p(y) =

∫

x
p(y|x,Θy|x)p(x)dx is the marginal distribution of their de-

scriptions. The mutual information may therefore be interpreted as the decrease
in uncertainty of the training patterns x given their representations y, which is

1In many cases supervised learning may be thought of as an optimization framework for
evaluating parameters of the mapping from the inputs to the explicitly defined target outputs.

2Unsupervised learning defines an optimization framework for the cases when the observa-
tions cannot be represented as associative pairs of inputs and the corresponding target outputs
(or environmental values, cf reinforcement learning).
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one of the fundamental measures of information theory (see e.g. McEliece (1977),
Cover and Thomas (1991)). While the idea of maximizing mutual information
has been long known in communication and information theory (see e.g. Blahut
(1972), Arimoto (1972), McEliece (1977)), it was introduced to the machine learn-
ing community relatively recently (Linsker (1988)). Since then it has been used in
a variety of contexts, including clustering (e.g Dhillon and Guan (2003), Jenssen
et al. (2003)), population coding (e.g. Brunel and Nadal (1998), Stocks and
Mannella (2001)), and feature extraction (Principe et al. (2000), Torkkola and
Campbell (2000), Gokcay and Principe (2002)). A variety of other unsupervised
learning techniques making a recourse to information theory are conceptually dif-
ferent from Linsker’s infomax (Linsker (1988), Linsker (1989a), Linsker (1989b)),
and utilize the mutual information in different contexts. For example, the family
of “information bottleneck” methods (Tishby et al. (1999), Slonim et al. (2001),
Chechik and Tishby (2002), Dhillon et al. (2002), Still and Bialek (2004)) proposes
to maximize the amount of information which the compressed codes of the origi-
nal data contain about some variables of relevance, while minimizing the amount
of information between the data and the codes. The semi-supervised learning
methods of Szummer and Jaakkola (2002) and Corduneanu and Jaakkola (2003)
suggest to use the local mutual information (computed for each small region of
the data space) as a local regularizer of a conditionally trained model. A funda-
mentally different Imax objective criterion (see e.g. Becker (1992), Becker and
Hinton (1992)) suggests to optimize the information content between the code
variables, rather than between the sources and the codes. The redundancy re-
duction methods (Barlow (1989), Atick (1992), Field (1994)) may also be viewed
as specific approximations of the exact mutual information between the source
patterns and their encoded representations (Nadal and Parga (1994), Nadal et al.
(1998)). These are just a few of the machine learning methods to mention which
require computations of the mutual information under various modeling assump-
tions.

We may generally view these learning methods as optimization procedures,
which optimize different objective criteria defined for specific probabilistic models.
The models may be conveniently described within the probabilistic graphical mod-
eling paradigm, which offers a convenient framework for graphical representations
of joint probability distributions via local constraints (Pearl (1988), Lauritzen and
Spiegelhalter (1988), Cowell et al. (1999)). The objective functions, including
the likelihood and the mutual information, may then be expressed by computing
specific expectations for the considered probabilistic models (generally, the objec-
tives may be interpreted as functionals of the joint probability distribution). The
probabilistic view offers many advantages, including a formal generalization of
inference (performed by the sound rules of probability theory), and theoretically
motivated definitions of objective criteria for optimization. Moreover, reliance
on the formal calculus of uncertainty makes the graphical models suitable for
reasoning in uncertain (e.g. noisy or partially hidden) domains.

Unfortunately, this theoretical rigor comes at the expense of computational
complexity of learning, which may be prohibitively high for many problems of
interest. This motivates necessity of accurate and computationally tractable
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approximations of the optimized criteria. The fundamental cause of computa-
tional intractability of rigorous learning methods in most of the high-dimensional
densely-connected graphical models is the high complexity of computing the ex-
pectations over the hidden variables (typically, this complexity would be low only
for a limited number of special cases). For example, fitting the model p(x, y) to a
set of training patterns {x} by maximizing the exact likelihood would require com-
putations of the marginal p(x), which involves averaging p(x|y) over the marginal
distribution of the hidden variables p(y). Analogously, the exact evaluation of
the mutual information between the sources x and the codes y requires compu-
tations of the entropy of the hidden variables, which is a negated expectation of
log p(y) over p(y). Clearly, as long as the integrals cannot be computed analyti-
cally (which happens, for example, when p(y) is not in the tractable family and
the integrands do not decouple in y), the complexity of computing the objectives
is generally exponential in |y|.

In this work we will focus particularly on a discussion of variational lower
bounds on the generally intractable mutual information for intrinsically intractable
stochastic channels. While variational bounds on the generally intractable like-
lihoods are well-known and widely applied in a variety of approximate learn-
ing problems (see e.g. Jaakkola (1997), Saul and Jordan (1998), Barber and
Wiegerinck (1998), Neal and Hinton (1998) and many others (see Jordan et al.
(1998) for references and overview)), surprisingly little work in machine learning
appears to have been done on developing a general framework for optimizing the
mutual information for the cases when it cannot be computed exactly. In fact,
most of the current methods consider maximizing the mutual information for
low-scale channels (when the computations may be tractable), or consider vari-
ous numerical approximations which are generally accurate only in the asymptotic
limits (see e.g. Brunel and Nadal (1998), Kang and Sompolinsky (2001), Hoch
et al. (2003)). Other somewhat heuristic objective criteria (e.g. “information
potentials”) are sometimes used as surrogate objectives (Torkkola and Campbell
(2000), Gokcay and Principe (2002)), but generally little is known about the
conditions when such approximations may be accurate for maximizing the ex-
act mutual information (Torkkola (2000)). Other methods suggest to optimize
proper bounds, but may only be applied for a specific choice of the variational
distribution (e.g. Linsker (1992), Jaakkola and Jordan (1998), Lawrence et al.
(1998)), which complicates their extensions to richer families of methods.

In this work we will describe a family of variational lower bounds on mutual in-
formation I(x, y), which gives rise to a formal and theoretically justified approach
to information maximization in noisy channels. We will outline a simple varia-
tional Information Maximization (IM) algorithm, reminiscent of the generalized
variational EM algorithm for likelihood training (Neal and Hinton (1998)), and
demonstrate that it provides a simple and effective tool for learning encoders and
variational decoders in a principled manner. We will show that in the simplest
case when the variational distribution is unconstrained, the proposed variational
optimization procedure reduces to a generally intractable form of the Arimoto-
Blahut (Arimoto (1972), Blahut (1972)) algorithm for maximization of channel
capacity. In the case when the variational decoder is constrained to be a linear
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Gaussian, a specific application of the bound reduces to Linsker’s as-if Gaussian
criterion (Linsker (1992)). Then we will discuss a richer family of the auxiliary
variational lower bounds on the mutual information, which formally generalizes
on the simple variational bounds.

In the later chapters, we will investigate the relation of our approach to the
variational likelihood training in generative models and conditional likelihood
training in stochastic autoencoders. Specifically, we will show that conventional
methods of maximizing the variational Jensen’s bounds on the conditional like-
lihood in stochastic autoencoders may be interpreted as a complicated way of
optimizing a simple bound on the mutual information. Additionally, standard
approaches to training (noiseless) autoencoders may be shown to optimize the
simplest form of the variational lower bound on the mutual information between
the sources and the codes for a noiseless encoding mapping. Furthermore, we will
discuss applications of the considered framework to dimensionality reduction,
clustering, and population coding. We will show that for a specific parameteriza-
tion of the encoder distribution, our method favorably compares with the common
approximation of Brunel and Nadal (1998) and Kang and Sompolinsky (2001).
We will also compare the variational method with an alternative approximation
of the mutual information inspired by the recent work of Szummer and Jaakkola
(2002) and Corduneanu and Jaakkola (2003), and empirically demonstrate that
in the considered cases our variational technique is more preferable.

Probably the most important contribution of this work is a simple and general
framework for maximizing the mutual information in high-dimensional stochastic
channels. We show that it formally generalizes and outperforms some of the com-
mon information-maximizing techniques. Curious side-products of the framework
are the general relations between the conditional and the information-theoretic
learning methods (Chapter 3), a compression method for continuous data (Chap-
ter 4), an information-theoretic clustering method applicable for learning kernel
functions (Chapter 5), and a local learning rule for population coding in a set of
point-neuron models (Chapter 6).

In the rest of this chapter we will briefly discuss general differences of Maxi-
mum Likelihood and Maximum Mutual Information methods, and introduce the
basic concepts of information theory. The presentation in Section 1.2 is high-level;
we will return to it in more details in Chapter 3.

1.2 Maximum Likelihood and Maximum Mutual In-

formation

One of the principal goals of generative graphical modeling is finding a model
which describes how the observed data is generated from hidden variable repre-
sentations. A principled objective function which is typically optimized during
learning in this case is the likelihood of the model’s parameters. The probabilistic
graphical formulation (see e.g. Pearl (1988), Jordan (1998), Jordan (2005)) may
be used to simplify computations of the likelihood in a principled way, where the
optimized objective may be formally obtained from the model’s structure and
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parameterization. At the stage of problem specification, this helps to shift the
focus of applying expert heuristics from developing ad hoc algorithms and ad hoc
optimization criteria to designing graphical models (which may have a semantic
meaning and may arguably be easier to specify, analyze, and apply for answering
inferential queries).

The choice of the likelihood as an objective function for optimization is at-
tractive for a number of reasons. In particular, many practically useful objective
functions used rather heuristically in a variety of applied domains (from engineer-
ing to neuroscience) may be shown to correspond to likelihood maximization in
specific graphical models (e.g. Bishop (1995)). Moreover, if the joint distribution
defined by a chosen model has the same parametric form as the true distribution,
then likelihood-based learning may be viewed as obtaining statistical estima-
tors of the unknown parameters from a set of samples given by the training set.
Subject to very general regulatory conditions, the resulting maximum-likelihood
estimators have attractive statistical properties, such as asymptotic consistency,
efficiency, and normality (Fisher (1922), Fisher (1925), Cramer (1946), Fisher
(1950)).

In many cases, the distribution of the data expressed from a specified model
does not perfectly match the underlying process (for example, due to the re-
strictiveness of the inductive bias). However, optimization of the likelihood is
still justifiable in this case. Specifically, for i.i.d. observations, maximization of
the likelihood with respect to the deterministic parameters of the model may be
viewed as minimization of the Kullback-Leibler divergence (Kullback and Leibler
(1951), Kullback (1959)) between the empirical distribution and the model. Since
the KL divergence is theoretically minimal if and only if both distributions are
identical, we may expect that a trained model will approximate the empirical dis-
tribution, subject to the modeling constraints. As the size of a training dataset
increases, a properly chosen model trained by maximizing the likelihood will tend
to approximate the underlying data-generating process. An optimized model may
then be used for generating new data, inferring latent variable representations of
the observations, etc.

It is intuitive that for a latent variable model to provide a good fit to the ob-
servations, the latent variables should capture useful statistical properties of the
visible variables. By approximating the empirical distribution, generative models
trained by maximizing the likelihood tend to find latent variable representations
which are useful for generating the training data. This, however, does not nec-
essarily quantify predictability of the hidden variables from the observations. In
many practical situations it may be useful not only to be able to generate the
data and answer inferential queries about the hidden states, but also to quantify
how much information about the hidden variables is contained in a given set of
observations. For example, one may be interested in obtaining a model where
the observed symptoms are most informative about the hidden diseases, or where
the training data points are most predictive of their possible cluster labels. It
is known from information theory that a principal measure of informativeness
is given by the mutual information (e.g. McEliece (1977), Cover and Thomas
(1991)). Therefore, if the goal of modeling is re-defined as finding the most in-
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formative representations of the training data (in the entropy loss sense) then
maximization of the mutual information (Linsker (1988)) between the hidden
and the visible domains is, intuitively, a reasonable learning strategy to consider.

An alternative justification for maximization of the mutual information comes
from the field of communication and information theory, which is closely related
to graphical modeling and machine learning (e.g. MacKay (2003)). In this con-
text we can construct a probabilistic graphical model for a noisy communication
problem where the visible data vectors {x}, passed through a noisy channel, give
rise to perturbed received representations {y}. A classic result in information and
communication theory is that the mutual information I(x, y) between the trans-
mitted and the received vectors gives a lower bound on the channel capacity,
which defines the maximum source rate for which reliable communication may
theoretically be achieved (Shannon (1948), McEliece (1977)). Then it is clear that
maximization of mutual information between the transmitted and the received
vectors may be interpreted as maximizing the lower bound on the information
transmission over the noisy channel (Arimoto (1972), Blahut (1972), Cover and
Thomas (1991)), which is a formally justifiable, but generally computationally
intractable procedure.

1.3 Information-Maximization in Noisy Channels

The reliable communication of information over noisy channels is a fundamental
problem, ranging from from the construction of good error-correcting codes (see
e.g. Pretzel (1996), MacKay (2003)) to neural sensory processing (Barlow (1989),
Nadal et al. (1998)). A principal goal of information transmission is to commu-
nicate the source data over a channel without error. The problem is complicated
in the presence of a channel noise, which transforms the data sent through the
channels. In many practical cases we have a limited control over the communica-
tion system and cannot eliminate the noise completely. We would therefore like
to find an efficient way to minimize possible effects of the inherently irreducible
channel noise.

One of the key ideas of information theoretic approaches to communication in
noisy channels is to reduce possible effects of the noise by encoding the source vec-
tors {x} into codewords {t}, which is typically addressed by introducing a known
form of a systematic redundancy. At the communication stage, the codewords {t}
are transmitted through the noisy channel, which leads to the perturbed repre-
sentations {y} at the receiver’s end. Then the receiver applies a known decoding
rule to obtain reconstructions {x̃} of the original sources (see figure 1.1). Intu-
itively, we would like to construct the codes in such a way that despite the noise,
the received vectors preserve much of the useful information about the original
sources; in other words, {y} should be strongly predictive of {x}. The focus of
coding theory and information theory is mainly on finding optimal encoder and
decoder systems and analyzing their performance (McEliece (1977), Cover and
Thomas (1991), MacKay (2003)).

Traditionally, information theoretic approaches were applied to data compres-
sion and communication problems (Shannon (1948), McEliece (1977)). However,
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Figure 1.1: A schematic representation of a noisy channel. The source vector x is
transformed into a codeword t (for example, by introducing a known systematic redun-
dancy). The codeword is transmitted over the noisy channel, leading the perturbed
representation y. The receiver decodes y to produce an estimate x̃ of the original
source vector.

relatively recently they have been used for a wider range of machine learning
tasks, from feature extraction (Becker (1992), Becker and Hinton (1992), Fisher
and Principe (1998), Torkkola and Campbell (2000)) to clustering (Dhillon et al.
(2002), Dhillon and Guan (2003), Jenssen et al. (2003)), neural population coding
(Linsker (1989b), Linsker (1992), Brunel and Nadal (1998), Pouget et al. (1998),
Zhang and Sejnowski (1999)), audio-video fusion (Fisher et al. (2000)), and in-
dependent components analysis (Bell and Sejnowski (1995), Shriki et al. (2002)).
The family of information bottleneck (Tishby et al. (1999), Friedman et al. (2001))
approaches used a specific information-theoretic definition of the rate distor-
tion function, with a number of applications to feature extraction (Slonim et al.
(2001), Slonim (2002), Chechik and Tishby (2002)) and dimensionality reduction
(Chechik et al. (2003), Still and Bialek (2004)). Moreover, several techniques were
developed for combining likelihood and information-theoretic training, with ap-
plications to semi-supervised classification (Szummer and Jaakkola (2002), Cor-
duneanu and Jaakkola (2003)). The successful applications of information the-
oretic techniques for a wide range of machine learning problems advocates their
use as a general method for learning in noisy environments, which may go beyond
the conventional applications to coding and communication.

In this section we briefly review maximization of information transfer as a
general strategy for training probabilistic graphical models, and point out com-
putational difficulties of the exact formulation, as well as a few common ways
to address the issue of intractability. Initially, however, we will introduce the
fundamental definitions of information theory, which we will use throughout the
subsequent discussions.

1.3.1 Information Content, Entropy, and Mutual Information

Before discussing the information maximization principle in the context of learn-
ing in probabilistic graphical models, it is instructive to define the information
content of a random event, as well as the marginal and conditional entropy asso-
ciated with its distributions. First, we will assume that the random variable X
takes discrete values x in the range RX with probability p(X = x) (to simplify the
notation we will write p(x) to denote both the probability of the discrete event x
or, for continuous variables, the probability density function; also, when it is clear
from the context, we will use lower-case letters to indicate both random variables
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and their current states). Then we will discuss the corresponding definitions for
the case of continuous random variables.

1.3.1.1 Information content

We define the information content (or degree of surprise) of an event as a continu-

ous monotonically decreasing functional I(x)
def
= f{p(x)} ∈ [0,∞), x ∈ RX , f ∈

F of the distribution P (x), such that a linear decrease in certainty leads to a
generally super-linear increase in informativeness. Another requirement which
we impose on I is that the combined information content of a set of independent
events x(1), . . . , x(M) is additive, i.e.

I({x(1), . . . , x(M)})
def
= f{p(x(1), . . . , x(M))} ≡

M∑

m=1

f{p(x(m))}, (1.1)

∀i = 1, . . . ,M.x(i) ∈ RX , f ∈ F .

Here F indicates the space of the functionals which satisfy the specified con-
straints. From (1.1) it is clear that

f{p(x)M} = Mf{p(x)}. (1.2)

By the constraints on f and the continuity principle it is easy to show that (1.2)
holds ∀M ∈ (−∞,∞) (see e.g. Bishop (1995)). It is also clear that a family of
functionals satisfying (1.2) includes f{p(x)} = − logb p(x), where the base b > 1,
thus leading to3

I(x) = − logb p(x), b > 1. (1.3)

By convention, the information content is expressed in bits (b = 2) or in nats (b =
e); unless noted otherwise, we will usually assume that b = e. From (1.3) it is clear
that the information content of the unlikely events (p(x) → 0) is exponentially
large, while the information content of events occurring deterministically (p(x) =
1) equals to zero.

1.3.1.2 Marginal entropy of discrete events

The absolute entropy, which is a fundamental measure of uncertainty of a discrete
random variable x ∼ p(x), is defined as the average information content

H(x)
def
= −〈log p(x)〉p(x), (1.4)

where 〈f(x)〉p(x)
def
=

∑

x f(x)p(x) denotes the expectation of f(x) over p(x) (as-
suming that x is discrete). If p(x) is a marginal distribution of a more complex
model, (1.4) is commonly referred to as the marginal entropy. Originally devel-
oped in statistical physics for describing macroscopic states of closed systems (see
e.g. Landau and Lifshitz (1996) for the statistical mechanics formulation), it has

3For Rx ≡ N and the normalized distribution function p(x) = (1/2)x, the information con-
tent is expressed in bits as I(x) = f(p(x)) = xf(1/2) = − log2 p(x) with f(p(x)) ≡ − log2 p(x).
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been widely used in information theory (e.g. Shannon (1948), McEliece (1977))
and other applied domains. In this context, it may be formally thought of as a
quantification of the average amount of information provided by the observation
of a random variable x, distributed according to p(x).

The entropy defined by (1.4) satisfies a number of useful properties. For
example, it has been shown that H(x) lower-bounds an average length of a binary
message needed to encode x (Shannon (1948)). Additionally, it is easy to see
that for discrete variables the entropy is non-negative, reaching zero only in the
deterministic case. For this case it is also easy to show that H(x) is maximized
when p(x) = 1/|x| is uniform, leading to H(x) ≤ log |x|, where |x| is the number of
states. Therefore, informally we may think of H(x) as a measure of “sharpness”
of p(x), with the maximum obtained for the flattest (uniform) distribution. A
number of other useful properties and interpretations are described in a variety
of texts on information theory, e.g. Pinsker (1964), McEliece (1977), Cover and
Thomas (1991).

1.3.1.3 Conditional entropy of discrete events

For a pair of random vectors x, y, we may analogously define the conditional
entropy H(x|y) (equivocation of y about x). It is given as a functional of the con-
ditional distribution, averaged over the joint probability of the combined events

H(x|y)
def
= −〈log p(x|y)〉p(x,y) = 〈H(p(x|y))〉p(y). (1.5)

Here we defined H(p(x|y))
def
= −〈log p(x|y)〉p(x|y) to be the entropy of the condi-

tional distribution p(x|y). For the communication channel shown on Figure 1.1,
the conditional entropy (1.5) may be interpreted as the uncertainty of the receiver
about the source x for the fixed received vector y, averaged over the distribution
of the received vectors p(y).

As before, it is possible to interpret the conditional entropy as a quantification
of an average sharpness. Note that a large value of H(p(x|y)), achievable for
flat posteriors p(x|y), would indicate a large uncertainty in decoding a specific
codeword y by using p(x|y). Analogously, large values of the conditional entropy
H(x|y) would indicate a large uncertainty of decoding with the exact posterior on
average. Intuitively, the receiver may be interested in channels leading to small
values of the conditional entropy H(x|y), though generally the reconstruction
error will depend on the receiver’s decoding strategy.

1.3.1.4 Mutual Information

Finally, the mutual information is defined as a change in the average information
content of x due to the knowledge of y:

I(x, y)
def
= H(x) − H(x|y) = H(y) − H(y|x). (1.6)

Fundamentally, it may be interpreted as a measure of predictability of y from
x and, due to the symmetry, of x from y. From (1.6) it is easy to obtain the
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Figure 1.2: Graphical model of a noisy communication channel. Generally, we assume
that we cannot eliminate the channel noise, which is implied in the parameterization
of p(y|t).

equivalent formulation

I(x, y) = KL(p(x, y)‖p(x)p(y)). (1.7)

Clearly, the mutual information is minimized when p(x, y) = p(x)p(y), i.e. when
the received vectors y are independent of the transmitted sources x. It is easy
to see that if both x and y are discrete, the mutual information is bounded as
I(x, y) ∈ [0, log min{|x|, |y|}], where |x| and |y| correspond to the number of states
of the input and output variables.

1.3.1.5 Generalization to the continuous case

It may be shown that definitions similar to (1.4) – (1.7) are also applicable for
non-discrete random vectors (e.g. Cover and Thomas (1991)). In this case H(x)
and H(x|y) are referred to as differential entropies, and the averages in (1.4) and
(1.5) are computed by integrating over Rx and Ry. It may be shown that in this
case the differential entropies diverge to −∞, which makes it difficult to interpret
them as a measure of certainty in x. In fact, the differential entropies are not
even invariant under deterministic invertible transformations (McEliece (1977),
Bell and Sejnowski (1995)). However, by computing discrete quantizations of the
random variables, it may be shown that the mutual information I(x, y) computed
over the continuous range satisfies properties of the mutual information for the
discrete case, and therefore has similar properties and a similar fundamentally
useful interpretation. Specifically, from definition (1.7) and the property of non-
negativity of the Kullback-Leibler divergence, we may see that I(x, y) ≥ 0 for
both discrete and continuous quantities.
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1.3.1.6 Information maximization in graphical models

Figure 1.2 shows a simple graphical model of a noisy communication channel4. In
a stochastic context, the quantitative part of the model is specified by the source
distribution p(x), the encoding transformation p(t|x), and a generally noisy non-
invertible channel mapping p(y|t). The key idea of information maximization is to
choose a mapping from source variables (inputs) x to response variables (outputs)
y such that the outputs contain as much information as possible about which of
the inputs was transmitted. The principal measure of information transfer in this
context is the mutual information I(x, y), defined by expression (1.6). The general
aim will be to set any adjustable parameters of p(y|x) = 〈p(y|t)〉p(t|x) in order to
maximize I(x, y). Generally, we will presume that we are limited in the way we
can adjust p(y|t); specifically, we may assume that we cannot explicitly modify the
channel noise. For example, for deterministic mappings p(t|x) ∼ δ(t − t(x)) and
Gaussian channels p(y|t) ∼ Ny(t, σ

2
e I), we easily get p(y|x) ∼ Ny(t(x), σ

2
e I). For

the fixed noise variance σ2
e , our purpose in this specific case would be to modify

the encoder mapping t(x). In a more general context, we will be trying to learn
the modifiable parameters of p(y|x) to maximize the mutual information. With a
slight abuse of terminology, we will refer to p(y|x) as the encoder distribution.

One specific case of interest we consider in this chapter is when the source is
given by the empirical distribution

p̃(x) =
1

M

M∑

m=1

δ
(
x − x(m)

)
, (1.8)

for a finite set of unique training patterns {x(m)|m = 1, . . . ,M} (generalization
to the repeating patterns is straight-forward; we omit it here for clarity). Unless
stated otherwise, we will also assume that the channel is memoryless, i.e. each
perturbed pattern y(i) depends only on the corresponding source vector x(i). In
this case, the theoretically optimal decoder which maximizes the mutual infor-
mation is given by Bayes rule (e.g. Papoulis (1984)) as

p(x|y) =
M∑

k=1

δ
(
x − x(k)

)
ωk(y), ωk(y)

def
=

p(y|x(k))
∑M

m=1 p(y|x(m))
, (1.9)

where we assumed that the adjustable parameters of the encoder p(y|x) in the
definition of ω(y) are fixed at their optimal values. Clearly, (1.9) is a mixture
of Dirac delta functions, which reduces to a single delta peak only for the case
when stochastic images I of distinct source vectors are non-intersecting under the
encoder p(y|x), i.e. ∀i, j ∈ {1, . . . ,M}.i 6= j.I(xi) ∩ I(xj) =ø. Formally, this is
never the case if ∀y.∀x.p(y|x) 6= 0, which leads to a mixture form of the Bayesian
decoder p(x|y).

4Several equivalent graphical representations are possible. The model shown on Figure 1.2 is
chosen in order to illustrate the similarity with the noisy communication channel (Figure 1.1).
Here we presumed that p(y|t) = 〈p(y|t, e)〉p(e), where e ∼ p(e) is the implied random noise.
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1.4 Computational Problems of the Exact Formu-

lation

Unfortunately, the choice of the theoretically optimal decoder (1.9) may compli-
cate evaluation of the true mutual information I(x, y), as well as learning of the
optimal encoder p(y|x). The reason for it is that in the expression of the mutual
information (1.6), the complexity of computing the conditional entropy H(x|y)
for the mixture distribution p(x|y) is in general exponential in |y|. Indeed, from
(1.6) and (1.9) we get

I(x, y) =

〈

log
M∑

m=1

p
(
y|x(m)

)

〉

p(y)

−
M∑

m=1

〈
log p

(
y|x(m)

)〉

p(y|x(m)) , (1.10)

which involves integration over the y variables. For a model shown on Figure 1.2,
evaluation of the second term in (1.10) is computationally tractable as long as
p(y|x) has a simple structure (for example, if it is factorized in y). However, evalu-
ation of the first term in (1.10) (which is, in fact, the marginal entropy of the out-
puts H(y)) is in general problematic, since the marginal p(y) ∝

∑M
m=1 p(y|x(m)),

being a mixture, is coupled in y. Therefore, computation of the mutual infor-
mation generally involves integration over an exponential number of states of
the output vectors. Moreover, it is important to note that the representational
complexity of storing the optimal decoders is also in general exponential in |y|,
which motivates a choice of parametric or structural constraints on decoder’s
specification.

1.4.1 Tractable Special Cases

The problem of optimizing (1.6) has been well explored for a number of tractable
special cases. Specifically, it has been looked at in the context of maximizing the
channel capacity for systems with very low-dimensional output spaces (Arimoto
(1972), Linsker (1989b)). Indeed, for low-dimensional discrete outputs the effec-
tive number of states of y may be reasonably small, so that the summations in
(1.10) may be computed exactly. For the continuous case (e.g. for y ∈ R

|y|), it
may be impossible to express the mutual information analytically. However, due
to the fact that y is low-dimensional, the integrals in (1.10) may be efficiently
approximated numerically (for example, by applying the mean-value theorem or
using any of the known methods of numerical integration, see e.g. Korn and Korn
(1968), Press et al. (1992), Dahlquist (2003)).

Additionally, computations may be tractable in the case when the encoder
p(y|x) ∼ δ(y−g(x;Θ)) is deterministic and invertible (Bell and Sejnowski (1994),
Nadal and Parga (1994)), so that the mutual information is easily expressed as

I(y, x) = c −

〈

log
p(x)

|Jx|

〉

p(x)

= c + H(x) + 〈log |Jx|〉p(x). (1.11)

Here c is a constant which does not affect the optimization surface for p(y|x),
Jx = {∂gi(x)/∂xj} is the Jacobian of the invertible mapping, and the average is
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computed over the source vectors x. It is easy to see that if p(x) is the empirical
distribution (1.8), the objective (1.11) is tractable. Moreover, for specific choices
of the invertible mapping g(x;Θ) : x → y, optimization of (1.11) with respect to
the encoder parameters Θ leads to the infomax (Linsker, 1989a) formulation of
ICA (Bell and Sejnowski, 1995).

Other tractable cases include linear Gaussian channels with the Gaussian dis-
tribution of the sources (Linsker, 1989a), or in fact any model where p(x, y) is
jointly Gaussian. For this case, maximization of the mutual information reduces
to learning the structured covariance matrix of the Gaussian decoder p(x|y). Gen-
erally, for all of the discussed special cases, it is tractable to compute I(x, y) and
its gradients exactly. In order to find the optimal encoder, one may use iter-
ative algorithms for maximizing the channel capacity (Arimoto (1972), Blahut
(1972)), apply numerical optimization procedures (e.g. Bishop (1995), Luen-
berger (1998)), or in some cases find the optimal solutions analytically (Linsker
(1989a), Linsker (1989b)).

1.5 Common Approximations of Mutual Informa-

tion

We will now briefly describe several common methods which may be used to ad-
dress the computational intractability of the exact formulation of the information-
maximization problem. We focus specifically on Linsker’s as-if Gaussian approxi-
mation, as it will prove to be relatable to the variational approach to information
maximization which we will introduce in Chapter 2. See Section 6.3.1 for a de-
tailed discussion of Brunel and Nadal’s Fisher approximation criterion (Brunel
and Nadal (1998)).

1.5.1 As-if Gaussian Approximation of I(x, y)

In Section 1.4.1 we mentioned several choices of the encoding distribution leading
to the exact computations of the mutual information. For more general encoding
distributions, it may be necessary to consider approximations of I(x, y). Here
we will discuss the method introduced by (Linsker (1992)), which utilizes the
simple simple as-if Gaussian approximation of the mixture distribution. The
key idea here is to approximate I(x, y) by assuming that the joint distribution
p(x)p(y|x) ≈ pG(x, y) ∼ N (µ,Σ) is a Gaussian, independently of the exact form
of p(x, y). Without loss of generality, we will presume that the data is centered,
i.e. µ = 0.

Note that the conditional entropy in (1.6) may in this case be approximated
by

H(x|y) ≈ HG(x|y)
def
= −〈log pG(x|y)〉pG(x,y) = (1/2) log(2πe)|x||Σx|y|, (1.12)
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where Σx|y is the covariance of the decoder pG(x|y) expressed from the joint Gaus-
sian pG(x, y). If the joint covariance is partitioned as

Σ
def
= 〈[x y][x y]T 〉p(x,y) − 〈[x y]〉p(x,y)〈[x y]T 〉p(x,y) (1.13)

def
=

(
Σxx Σxy

Σyx Σyy

)

∈ R
(|x|+|y|)×(|x|+|y|), (1.14)

we may express the conditional covariance as

Σx|y = Σxx − ΣxyΣ
−1
yy Σyx (1.15)

(see e.g. von Mises (1964)). Then a substitution into the expression for mutual
information (1.6) leads to the objective function

2IG(x, y) = log |Σxx| − log |Σxx − ΣxyΣ
−1
yy Σyx|. (1.16)

For the assumed case of µ = 0, the objective (1.16) reduces to

2IG(x, y) = const − log |〈xxT 〉 − 〈xyT 〉〈yyT 〉−1〈yxT 〉|, (1.17)

where the averages are computed over the source and the channel distributions
p(x), p(y|x). Note that if p(x) is the empirical distribution, the as-if Gaussian
approximation (1.17) of the mutual information I(x, y) is a function of the en-
coder p(y|x) alone; optimization of (1.17) corresponds to learning the encoder’s
parameters.

It turns out that the as-if Gaussian objective IG(x, y) corresponds to a proper
variational lower bound on the true mutual information I(x, y) under the as-
sumption of a Gaussian decoder (see Section 2.1). In other words, Linsker’s
approximation (Linsker (1992)) may be seen as a special case of a much more
general variational procedure.

We will also show that in some simple cases, the encoder parameters obtained
by maximizing (1.16) may be expressed analytically. Specifically, for linear Gaus-
sian channels with the isotropic noise p(y|x) ∼ Ny(Wx, σ2I), where W ∈ R

|y|×|x|

and |y| < |x|, the right singular vectors of the optimal weights correspond to

rotations of the principle eigenvectors of the sample covariance S
def
= 〈xxT 〉 (see

the discussion in Section 4.1.1). Equivalently, the result may be obtained in the
noiseless limit of undercomplete linear projections y = Wx.

1.5.2 Other Approximations of I(x, y)

Note that a general way to evaluate intractable averages over the hidden vari-
ables is by drawing independent samples from appropriate distributions, and
using Monte-Carlo estimations of the objective criteria (see e.g. Neal (1993),
Gamerman (1997)). The method is conceptually attractive, as conceptually sim-
ilar techniques can be used to approximate arbitrary averages over the latent
variables. However, in practice sampling techniques have several important draw-
backs. First of all, sampling independent points from the equilibrium distribution
may be extremely time-consuming, since the system may get trapped in a local
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mode of the distribution (e.g. Hertz et al. (1991), Neal (1993)). This prob-
lem is partially addressed by a number of auxiliary sampling techniques, such as
hybrid Monte Carlo for continuous spaces (e.g. Neal (1993)), or the Swendsen-
Wang (Swendsen and Wang, 1987) and partial decoupling (Higdon (1998), Morris
(1999)) algorithms for discrete variable spaces, which may help to improve con-
vergence time and reduce the time gap between independent samples (see e.g.
MacKay (1998) for an introductory discussion). A somewhat more fundamental
problem is assessing convergence to the equilibrium (and therefore the quality
of the resulting approximations). In the future, we may potentially consider
applications of sampling methods in the information-theoretic context; however,
due to the general difficulties of assessing the quality of the resulting estimates,
we do not consider them in the suggested work. In what follows, we will only
consider analytical approximations of I(x, y), and compare our results against
other analytical approximations.

One of the relatively recent analytical approximations of mutual information
is based on the idea of interpreting different dimensions {yi} of the codewords
y ∈ R

|y| as independent samples from a distribution parameterized by the source
vectors x (see Brunel and Nadal (1998)). Specifically, if the encoding distribution

p(y|x) =
∏|y|

i=1 pi(yi|x) and pi(yi = s|x) ≡ pj(yj = s|x) for all i, j = 1, . . . , |y|,
then one may make a recourse to the results of statistical parameter estimation
theory (e.g. Cramer (1946)) and approximate a lower bound on mutual infor-
mation I(x, y) by applying the data-processing and the Cramer-Rao (Cover and
Thomas (1991)) inequalities. While a direct application of the inequalities leads
to a computationally intractable bound on I(x, y), the bound may in some cases
be efficiently approximated by considering further numerical relaxations (Brunel
and Nadal (1998)). Generally, the suggested approximations of the lower bound
on I(x, y) are accurate under the asymptotic assumption of infinitely large code
spaces (|y| → ∞), but they may lead to unstable behavior of the resulting learn-
ing algorithms for |x| < |y|. The identical results were also obtained by Kang and
Sompolinsky (2001), who considered different numerical approximations applied
in the same asymptotic limit |y| → ∞.

Another approximation of I(x, y) may be obtained by a simple re-formulation
of the local approximations of Szummer and Jaakkola (2002) and Corduneanu and
Jaakkola (2003), who propose to approximate the mutual information numerically
for each infinitely small symmetric region in the source space. By applying the
chain rule on mutual information, it is straight-forward to show that their cri-
terion may be used to approximate a lower bound on I(x, y) (see discussion in
Section 6.3.2). A number of other somewhat heuristic objective criteria is often
used to approximate I(x, y) (see e.g. Principe et al. (2000), Torkkola and Camp-
bell (2000), Gokcay and Principe (2002)), though the resulting approximations
may be rather difficult to justify for maximizing the mutual information (Torkkola
(2000)). Other work focuses specifically on noiseless overcomplete communica-
tion channels (where |y| > |x| and p(y|x) ∼ δ(y − f(x)) (see Shriki et al. (2002)))
and cannot be easily applied in the case of stochastic encoding mappings.
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1.6 Thesis Overview

In the following chapters we will discuss a principled and computationally tractable
approach to maximization of the information transfer in large-scale stochastic
models. Particularly, we will be interested in the family of variational approaches,
where the goal may informally be formulated as transforming optimization of
a generally intractable functional to optimization of its tractable bound. The
tractability of the variational methods is typically achieved by decoupling the
degrees of freedom of the original functional at the cost of introducing additional
variational parameters. Variational methods have been long described in exten-
sive mathematics and physics literature (see e.g. Gelfand and Fomin (1963), Ewig
(1985), Fox (1987), Riley et al. (2002)), and applied to graphical modeling in the
context of bounding the partition functions (see e.g. Jaakkola (1997), Jordan
et al. (1998), Wainwright et al. (2002), Wainwright (2002)). We will be mainly
interested in deriving tractable bounds on the mutual information.

In Chapter 2 we will discuss a simple and general variational approach to
maximizing a proper (generic) lower bound on I(x, y) in a noisy channel, and
show that in the special case when the variational distribution is unconstrained,
the method gives rise to the family of Blahut-Arimoto type algorithms (Arimoto
(1972), Blahut (1972)). Generally, however, constraining the variational distribu-
tions is important in order to ensure that the method remains computationally
tractable. We will also show that optimization of Linsker’s as-if Gaussian ob-
jective criterion (Linsker (1992)) corresponds to a specific way of optimizing the
variational lower bound on I(x, y) for a specific choice of the variational decoder
distribution. Finally, we will introduce an auxiliary variational approach to ap-
proximate information maximization, which formally generalizes on the simple
generic bound without altering properties of the original channel.

In Chapter 3 we will explore general relations of the variational information-
maximizing algorithm to maximum likelihood learning in generative models and
conditional likelihood learning in chains. We will outline general differences be-
tween encoder models of communication channels and generative models. We
will also show that the likelihood of a generative model may be viewed as a lower
bound on I(x, y) for the corresponding model of the stochastic channel, where
the encoding distribution is the exact posterior of the generative model. A prac-
tical side-effect of this study is an information-theoretic objective for training
generative models. We will also demonstrate a close relation between optimiz-
ing the generic variational bound on I(x, y) and conditional likelihood training in
stochastic autoencoders. Additionally, we will show that common approaches to
training noiseless autoencoders maximize proper lower bounds on I(x, y) (under
the assumption of noiseless encoding mappings).

In Chapter 4 we will consider an application of the variational information
maximizing approach to noisy constrained dimensionality reduction. We will
prove a simple result that for constrained linear Gaussian channels, optimization
of Linsker’s bound cannot improve on the PCA projections. On the other hand,
the richer family of the auxiliary variational lower bounds on I(x, y) leads to sig-
nificant improvements over Linsker’s (PCA) bounds. This result is potentially
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interesting from the communication-theoretic perspective, as it demonstrates a
simple and computationally efficient way to produce tighter bounds on the ca-
pacity of a communication channel without altering its properties (e.g. without
communicating more data across the channels). Additionally, we will discuss a
simple information-theoretic approach to constrained dimensionality reduction
for hybrid channels x → {y, z} (where x ∈ R

|x|, y ∈ R
|y|, and z ∈ {1, . . . , |z|}),

which may significantly improve reconstructions of the sources {x} from their
lower-dimensional representations {y} at a small increase in the transmission
cost (given by |z|). We will also point out a curious link between maximizing
I(x, {y, z}) in a hybrid channel and maximizing the likelihood for a mixture of
constrained Factor Analysis-type models with the uniform (rather than the spher-
ical) distribution of the factors.

Chapter 5 demonstrates applications of the information-maximizing frame-
work for the case of nonlinear encoder models. Specifically, we will discuss sev-
eral ways of applying the framework to information-theoretic clustering. We
will empirically demonstrate that the resulting information-theoretic clustering
approaches favorably compare with the conventional clustering techniques. More-
over, we will show that the information-maximizing framework may be used to
learn kernel functions, which may indeed be of a practical benefit for visualiz-
ing the underlying structure of the data. Moreover, we will review some of the
theoretical properties of the variational information-maximizing framework for
nonlinear Gaussian encoding distributions; for example, we will show that the
Gaussian Process Latent Variable Model (Lawrence (2003)) arises as a special
case of our information-theoretic formulation.

Chapter 6 explores applicability of the variational information-maximizing
framework in the context of learning high-dimensional binary representations of
continuous source patterns. We will consider the situation when the binary en-
codings are conditionally independent, and compare our variational approach
with Brunel and Nadal’s Fisher approximation of mutual information (Brunel
and Nadal (1998)). Moreover, we will use the results of Szummer and Jaakkola
(2002) and Corduneanu and Jaakkola (2003) to derive another straight-forward
approximation of I(x, y). Our empirical results indicate that for the considered
case, the variational approach is most preferable, while both the local approxi-
mation of I(x, y) (based on the work of Corduneanu and Jaakkola (2003)) and
the generic variational approach significantly outperform the common Fisher ap-
proximation for undercomplete projections (the compression paradigm). Addi-
tionally, we will demonstrate that for a considered encoding distribution it is
possible to derive a local learning rule, which may potentially be attractive from
the neuro-biological perspective. This extends the results of Linsker (1997), who
has previously showed the existence of local approximations of nonlinear opti-
mization procedures on I(x, y) for invertible encoding mappings x 7→ y (cf Nadal
and Parga (1994), Bell and Sejnowski (1995)).

In Chapter 7 we will change the perspective and consider a seemingly unre-
lated problem of lower-bounding the normalizing constant (log partition function)
of a probability distribution. Specifically, we will introduce an auxiliary variable
extension of any structured mean field theory, which can be useful in the context
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of approximate probabilistic inference. While the method described there is of a
potential interest as a general approach to approximate inference, it demonstrates
a curious link to our variational information-maximizing framework. In particu-
lar, we will show that the improvement of the proposed bound on log Z over a
convex combination of simpler bounds given by the standard theories is defined
by a specific form of the generic lower bound on mutual information. The vari-
ational information-maximizing framework may therefore be seen as addressing
an integral subgoal of variational inference. We will also show that the existing
variational mixture methods (see Jaakkola and Jordan (1998), Lawrence et al.
(1998)) may be viewed as specific numerically difficult instances of the auxiliary
variational approach.

Finally, Chapter 8 summarizes the results and outlines directions for extending
the presented work.
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Chapter 2

Variational Information

Maximization

Here we describe a family of variational lower bounds on mutual information
I(x, y), which gives rise to a formal and theoretically justified approach to infor-
mation maximization in noisy channels. In Section 2.1 we describe the variational
Information Maximization (IM) algorithm, reminiscent of the generalized varia-
tional EM algorithm for likelihood training, and demonstrate that it provides a
simple and effective tool for learning encoders and variational decoders in a prin-
cipled manner. We show that in the simplest case when the simplest form of the
bound is used and the decoder is unconstrained, the proposed variational opti-
mization procedure reduces to a generally intractable form of the Arimoto-Blahut
(Arimoto (1972), Blahut (1972)) algorithm for maximization of channel capacity.
However, by choosing appropriate parametric constraints on the encoder-decoder
pair, we may avoid intractabilities in a principled manner. The resulting algo-
rithm would be optimizing a simple generic lower bound on mutual information,
subject to the specific constraints on the variational decoder.

Then we outline general properties of the bound. In Section 2.2.1 we describe
effects of choosing specific sparse decoder structures on the generic lower bound on
I(x, y). Not surprisingly, we show that by considering richer decoder structures,
we may indeed obtain tighter bounds on the intractable measure of information
content. We also discuss a simple relation of the variational bound to the common
as-if Gaussian approximation of the mutual information (Linsker, 1992). As we
show in Section 2.2.2, independently of the choice of the encoder distribution,
Linsker’s approach corresponds to a special case of our formulation, where the
variational decoder is constrained to be a linear Gaussian.

Finally, in Section 2.3 we introduce a richer family of auxiliary variational
lower bounds, which generalize on the simpler generic bounds on I(x, y). The key
idea there is to introduce additional variables, which may be used for capturing
useful features of the source patters, and for introducing global dependencies to
the decoded sources. Importantly, we show that the projections to the auxiliary
space may be defined in a way which does not alter the original channel. By
constraining the mappings to the auxiliary space to be in a tractable family and by
imposing appropriate constraints on the variational decoders, the resulting bound
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is a formal tractable generalization of the simpler generic approach described in
Section 2.1.

2.1 Generic Lower Bound on Mutual Information

Since the exact evaluation and optimizaton of the information transfer is in gen-
eral computationally intractable, our central aim here will be to maximize a
lower bound on the mutual information in a tractable way. Using the formula-
tion I(x, y) = H(x) − H(x|y), we are interested in optimising I(x, y) with respect
to the encoder p(y|x). In many cases which we consider p(x) is simply the em-
pirical distribution (1.8). In principle, this may be generalized to any case where
averaging over the sources p(x) is tractable. Nevertheless, since the distribution
of the source patterns is not a function of the channel parameters, it has no effect
on the optimization surface for p(y|x). Thus, to express the objective function we
need to bound the intractable entropic term H(x|y) suitably.

2.1.1 Definition of a Simple Lower Bound on Mutual Informa-

tion

In order to derive a simple lower bound on mutual information, we consider the
Kullback-Leibler divergence KL(p(x|y)||q(x|y)) between the posterior p(x|y) and
its variational approximation q(x|y). Non-negativity of the divergence (e.g. Cover
and Thomas (1991)) implies

〈log p(x|y)〉p(x|y)−〈log q(x|y)〉p(x|y) ≥ 0 ⇒ 〈log p(x|y)〉p(x|y)p(y)
︸ ︷︷ ︸

−H(x|y)

≥ 〈log q(x|y)〉p(x|y)p(y) .

(2.1)
This leads to

I(x, y) ≥ H(x) + 〈log q(x|y)〉p(x,y)
def
= Ĩ(x, y), (2.2)

where q(x|y) is an arbitrary distribution, which saturates the bound for q(x|y) ≡
p(x|y). This agrees with the intuition that for a given channel p(y|x), the opti-
mal decoder should correspond to the Bayesian posterior p(x|y), though for this
case the computation of the mutual information (and its derivatives) may be
intractable.

The bound (2.2) explicitly includes both the encoder p(y|x) and decoder q(x|y)
and has a form similar to the criterion optimized by the Blahut-Arimoto algo-
rithms for channel capacity (Blahut (1972), Arimoto (1972)). However, by anal-
ogy with a related variational extension (Neal and Hinton (1998)) of the classic
expectation maximization algorithm (Dempster et al. (1977)), it is practical to
extend the conventional formulation and constrain the decoder q(x|y) to lie in a
tractable family (Barber and Agakov (2003)). These constraints are important,
as they help to avoid computational intractability of the theoretically optimal,
but practically infeasible decoders derived in the unconstrained formulation (see
e.g. Cover and Thomas (1991)). The bound Ĩ(x, y) is then optimized for both the
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encoder p(y|x) and the variational distribution q(x|y) (which is generally different
from the posterior p(x|y)), subject to the imposed distribution and tractability
constraints. The variational distribution q(x|y), which we use in the specifica-
tion of the objective function, may be simply thought of as an auxiliary entity
to facilitate computation and optimization of the otherwise intractable mutual
information I(x, y). Importantly, our principal goal of maximizing the bound
Ĩ(x, y) is, as in the exact formulation, to learn the optimal adjustable parameters
of the encoder p(y|x).

Other (for example, mean-field type) relaxations of the mutual information
may potentially be considered (see e.g. Jaakkola and Jordan (1998)). However,
our current experience suggests that for certain choices of the decoder q(x|y), the
variational bound (2.2) considered above is particularly computationally conve-
nient. We will now outline a procedure for optimizing the bound and discuss
some of its fundamental properties.

2.1.2 The Variational IM Algorithm

Let P and Q denote families of the encoders p(y|x) and variational decoders
q(x|y) respectively. To assure applicability of the learning for the case of large
scale models, the distribution families must be chosen in such a way that the
bound (2.2) is tractable. This may be achieved, for example, by imposing appro-
priate parametric or structural constraints on Q in such a way that the averaging
over the codewords y is practically feasible. In our approximate approach to infor-
mation maximization, we follow the standard iterative variational procedure and
maximize Ĩ(x, y) with respect to p(y|x) ∈ P and q(x|y) ∈ Q. A simple recursive
optimization procedure performing information maximization (IM algorithm)
is then given as follows:

1. For a fixed q
(t)
X|Y ∈ Q, find p

(t+1)
Y |X = arg maxpY |X∈P Ĩ(x, y; pY |X , q

(t)
X|Y ) [M-

step];

2. For a fixed p
(t+1)
X|Y ∈ P, find q

(t+1)
X|Y = arg maxqX|Y ∈Q Ĩ(x, y; p

(t+1)
Y |X , qX|Y ) [I-

step];

3. Iterate M- and I- steps until a convergence criterion is met

where we used t for the iteration number and pY |X , qX|Y for the conditional
encoder p(y|x) and decoder q(x|y) respectively, and implied the distribution con-
straints on pY |X and qX|Y .

Proposition 2.1. The variational IM algorithm is guaranteed to maximize or
leave unchanged a lower bound on the mutual information.

Proof. The proof is straight-forward and follows from (2.2) and the algorithm
specification. Let t be the iteration number. From the M-step, it is clear that

〈log q(t)(x|y)〉p(t+1)(y|x)p(x) ≥ 〈log q(t)(x|y)〉p(t)(y|x)p(x). (2.3)
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Analogously, the I-step leads to

〈log q(t+1)(x|y)〉p(t+1)(y|x)p(x) ≥ 〈log q(t)(x|y)〉p(t+1)(y|x)p(x). (2.4)

Then from the transitivity we get

Ĩ(x, y|p(t+1)
Y |X , q

(t+1)
X|Y ) ≥ Ĩ(x, y|p(t)

Y |X , q
(t)
X|Y ), (2.5)

where Ĩ(x, y) is defined as in (2.2). Therefore, the IM algorithm is guaranteed to
maximize (or leave unchanged) the lower bound on the true mutual information
given by Ĩ(x, y).

In general, applicability of proposition 2.1 depends on the specifics of opti-
mization methods used during the I- and M- steps. For example, if optimization is
performed with respect to parameters of p(y|x) and q(x|y) by a numerical ascent in
the parameter space, one may encounter the usual problem of non-monotonic con-
vergence (e.g. for inappropriate learning rates, etc.) Practically, the proposition
holds if it is possible to express the IM steps in terms of closed-form fixed-point
updates (i.e. at each iteration the optima are expressed analytically), or if the
steps apply numerical optimization procedures which always lead to monotonic
changes in the objective functions (Bishop (1995),Galeev and Tihomirov (2000)).

2.1.2.1 Relation to the Blahut-Arimoto algorithm for maximizing channel

capacity

In the cases when the exact mutual information is tractable to compute, one
may apply any of the known numerical optimization techniques (e.g. Galeev and
Tihomirov (2000)) to optimize I(x, y) directly. Alternatively, one may optimize
I(x, y) by applying an iterative procedure, known as the Blahut-Arimoto algo-
rithm for maximizing the channel capacity (Arimoto (1972), Blahut (1972)). For
a fixed distribution of the source variables pX(x), the algorithm is given as

1. Find p
(t+1)
Y |X = arg maxpY |X∈P〈log p

(t)
X|Y (x|y)〉pY |X(y|x)pX(x);

2. Iterate until convergence.

Here it is assumed that p
(t)
X|Y (x|y) ∝ p

(t)
Y |X(y|x)pX(x) is the exact Bayes-optimal

decoder expressed from the channel distribution at the tth iteration of the training
algorithm.

It is easy to see that the Blahut-Arimoto algorithm corresponds to a special
case of the variational IM algorithm described above. Indeed, if the decoder is
unconstrained, i.e. if Q defines a family of all possible conditional probability den-
sity functions q(x|y) for x ∈ Rx and y ∈ Ry, then the information-maximization
algorithm reduces to a form of the Blahut-Arimoto algorithm for learning chan-
nel distributions. The proof is straight-forward, and follows from the convexity
of Ĩ(x, y) in q(x|y) and the fact that the bound is saturated for q(x|y) ≡ p(x|y)
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(see expression (2.2)). Clearly, a reduction of the IM algorithm to the Blahut-
Arimoto procedure also occurs when q(x|y) is constrained to be identical to the
true posterior p(x|y) at each iteration of learning, i.e.

q(t)(x|y) ≡ p(t)(x|y). (2.6)

In both of the described special cases, the iterative optimization procedure
is guaranteed to maximize or leave unchanged the exact value of the mutual
information. Indeed, a straight-forward substitution of (2.6) into (2.3) and (2.4)
implies

〈log p(t+1)(x|y)〉p(t+1)(y|x)p(x) ≥ 〈log p(t)(x|y)〉p(t)(y|x)p(x), (2.7)

i.e. I(t+1)(x, y) ≥ I(t)(x, y). An alternative proof shows that the Blahut-Arimoto
algorithm does not decrease the true mutual information, and is given here for
completeness.

Proposition 2.2. The Blahut-Arimoto algorithm is guaranteed to maximize or
leave unchanged the exact value of mutual information.

Proof. The iteration step of the algorithm implies

〈log p(t)(x|y)〉p(t+1)(y|x)p(x) ≥ 〈log p(t)(x|y)〉p(t)(y|x)p(x). (2.8)

Then, from non-negativity of 〈KL(p(t+1)(x|y)‖p(t)(x|y))〉p(x), we get

〈log p(t+1)(x|y)〉p(t+1)(y|x)p(x) ≥ 〈log p(t)(x|y)〉p(t+1)(y|x)p(x). (2.9)

As before, for a fixed H(x), a combination of (2.8) with (2.9) leads to I(x, y|p(t+1)
Y |X ) ≥

I(x, y|p(t)
Y |X).

It is known empirically that for convex objective functions, iterative opti-
mizers may be slow to converge (see e.g. the empirical results (Minka (2003))
on convergence of the iterative scaling algorithms (Darroch and Ratcliff (1972),
Berger et al. (1996), Collins et al. (2002)) for log-linear models). If I(x, y) is con-
vex in the encoder’s parameters, we may hypothesize that alternative optimiza-
tion techniques may outperform the Blahut-Arimoto algorithm in terms of the
convergence speed; moreover, computational tractability of the Blahut-Arimoto
algorithm would typically imply tractability of alternative optimization methods.
Generally, it is clear that in tractable channels one should have a flexibility in
choosing a specific optimization procedure.

Importantly, we emphasize once again that for many interesting channels, the
Blahut-Arimoto algorithm (and other numerical procedures optimizing I(x, y) di-
rectly) could be computationally difficult to apply, as it would require optimiza-
tion of the generally intractable entropy of a mixture in the optimization steps.
The proposed IM algorithm (and its numerical variations) address the problems
of computational intractability by introducing an additional functional parameter
– the variational decoder q(x|y), which is constrained to lie in a tractable family.
Then our goal is to maximize a proper lower bound on the intractable objective
I(x, y) with respect to the variational decoder and the adjustable parameters of
the channel distribution, subject to the imposed constraints.

24



2.1.3 Reconstruction of the Source Patterns

As discussed in Section 1.3, by maximizing the exact mutual information for
p(y|x), we try to establish an optimal way of encoding the sources for transmit-
ting them across the channel. Our goal remains unchanged in the approximate
variational formulation (though the optimization surface for p(y|x) will now be af-
fected by a specific choice of the variational distribution). Importantly, the bound
Ĩ(x, y) does not explicitly specify which decoder should be used at the receiver’s
end. However, just as in variational approaches to likelihood maximization, it
provides an option of reconstructing the source patterns with the learned vari-
ational posterior q(x|y). Here we briefly discuss other possible ways to perform
the reconstructions.

2.1.3.1 Reconstructions using the exact posterior

Once the optimal encoder is learned, the receiver may use it to compute the
Bayes-optimal decoder p(x|y), and apply it to reconstructing the original sources
{x} for the received representations {y}. From (2.2) it is easy to see that using
any other decoder (for a fixed learned channel) would indeed be Ĩ-suboptimal.
Unfortunately, using the exact posterior p(x|y) for decoding may not be plausi-
ble for many practical cases. For example, if p(x) is the empirical distribution,
computation of p(x|y) makes a recourse to the training data {x(i)|i = 1, . . . ,M}
(see (1.9)). In practice, this means that in order to perform the reconstructions,
the receiver needs to have an access to the empirical distribution p(x) used dur-
ing training, which requires storing the entire training set. Moreover, even if
the training set is available at the receiver’s end of the channel, using p(x|y) for
decoding would constrain the reconstructions to lie in the training set, which in
some cases may be restrictive (effectively, this case would correspond to extracting
training patterns {x(m)|m = 1, . . . ,M} from their noisy encoded representations
{y}).

Finally, for many interesting practical problems, computation of p(x|y) may
be intractable despite the tractability of averaging in (2.2). One practical case
when this may happen is the problem of syndrome decoding in binary symmetric
channels (see e.g. McEliece (1977)). Note that if all the source vectors are binary
and equiprobable, i.e. ∀x ∈ {0, 1}|x|. p(x) = 1/2|x|, computation of the exact
posterior

p(x|y) =
p(y|x)

∑2|x|

m=1 p(y|x(m))
(2.10)

involves a summation over an exponential number of states of the source variables
x ∈ {0, 1}|x|, which in most cases of interest is prohibitively expensive. Depending
on the structure of the graph, the exect posteriors may in some cases be accurately
approximated (Gallager (1963), MacKay (1999a)) by iterative algorithms (e.g.
Gallager (1963), Pearl (1988), Murphy et al. (1999)). However, for bipartite
graphs, the accuracy of approximations will typically drop with an increase in the
graph’s connectivity (Burshtein and Miller (2002)), and convergence will generally
be a problem.
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2.1.3.2 Reconstructions using the approximate posterior

It is clear that in the cases when it is impossible to compute the Bayes-optimal
decoder p(x|y), one needs to consider using alternative decoding schemes. For
example, one may need to approximate the exact posteriors p(x|y), e.g. by using
(structured) mean field models (Jaakkola (1997), Barber and Wiegerinck (1998),
Jordan et al. (1998), Saad and Opper (2001)), or applying iterative algorithms
for approximating the posteriors (Pearl (1988), Yedidia et al. (2000a), Yedidia
et al. (2000b), Weiss and Freeman (2001)). Generally, these methods would
require approximations of a new posterior for each new received vector y, which
may be plausible, but expensive to compute in practice. In the case of applying
iterative message-passing algorithms, it may be difficult to ensure the convergence
(see Ihler et al. (2005), Mooij and Kappen (2005) for the discussion of sufficient
conditions), while approximations yielded by the provenly convergent algorithms
(Heskes (2002), Yuille (2002)) may not necessarily be accurate estimates of the
exact posteriors. On the strong side, in many practical situations when the
propagation algorithms do converge, they often lead to accurate approximations
of the posteriors (MacKay and Neal (1999), Yedidia et al. (2000a)), as unlike
most of the variational approximations they do not impose explicit structural or
parametric constraints on the posteriors.

An attractive feature of the bound (2.2) is availability of the variational de-
coder q(x|y), which is learned along with the optimal parameters of the encoder
p(y|x). A quick and simple way to reconstruct the transmitted source vectors
would be to use q(x|y) with the optimized variational parameters. This appli-
cation of the variational distribution q(x|y) is analogous to using the variational
posterior for inference in generative models after training with the variational
EM (Neal and Hinton (1998)) algorithm. The principal advantage of variational
decoding is the simplicity of the resulting inference procedure. Clearly, subject
to the constraints on the variational decoder, the resulting variational recon-
structions are optimal, since optimally the objective function (2.2) is maximized
when q(x|y) ≡ p(x|y). Moreover, since the bound (2.2) is based on the KL diver-
gence between the true and the approximating posteriors, optimization for the
variational decoder is equivalent to a moment matching approximation of p(x|y)
by q(x|y), averaged over p(y). This fact may potentially be beneficial in terms
of decoding, since the more successful decoding algorithms tend to approximate
the mean of the posterior p(x|y) (Saad and Opper, 2001), whilst standard mode
matching approaches (such as mean-field theory) typically get trapped in the
one of many sub-optimal modes. We stress, however, that using the variational
posterior for inference is just one of the possible ways to reconstruct the sources.

2.1.4 Posterior Approximations

There is an interesting relationship between maximizing the bound Ĩ(x, y) in a
noisy channel, and computing an optimal estimate of an intractable posterior in
a generative graphical model with observations y and hidden variables x.

One of the goals of inference in graphical models is to approximate moments
of the generally intractable model-specific posterior p(x|y), where x is a vector of
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hidden variables, and y is a vector of observations. In general, this computation
is intractable, and approximations are required. A standard mean field approach
approximates the posterior marginal by minimizing the KL divergence:

KL(q(x|y)||p(x|y)) =
∑

x

{q(x|y) log q(x|y) − q(x|y) log p(x|y)} (2.11)

where q(x|y) =
∏

i q(xi|y). In this case, the KL divergence and its functional
gradients with respect to q(xi|y) are usually tractably computable (up to a ne-

glectable prefactor). Assuming that q(x\i|y)
def
=

∏

j 6=i q(xj|y) is fixed, we may opti-
mize KL(q(x|y)||p(x|y)) for q(xi|y), and express the variational posterior marginal
analytically (from the convexity of the KL). Typically, this results in q(xi|y) ap-
proximating any one of a very large number of local modes of the model-specific
posterior p(xi|y). Clearly, if the goal is to approximate moments of the exact pos-
terior, using mean field decoding which optimizes (2.11) is generally suboptimal.

Alternatively, we may consider

KL(p(x|y)||q(x|y)) =
∑

x

(p(x|y) log p(x|y) − p(x|y) log q(x|y))

= −
∑

x

p(x|y) log q(x|y) + c, (2.12)

where c is an irrelevant constant (the inverse entropy of p(x|y), which is not a
function of q(x|y)). This is the correct KL divergence in the sense that, optimally,
q(xi|y) = p(xi|y), i.e. the posterior mean is correctly calculated. The difficulty
lies in performing averages with respect to the exact posterior p(x|y), which are
generally intractable (since the posterior is fully coupled in x). However, it may be
possible to minimize the average divergence 〈KL(p(x|y)||q(x|y))〉p(y), which leads
to maximization of the generic bound (2.2) on the mutual information

∑

y

∑

x

p(y)p(x|y) log q(x|y) =
∑

y

∑

x

p(x)p(y|x) log q(x|y), (2.13)

where we ignored the irrelevant entropy of the source vectors. While for any given
y, the best posterior mean estimate may be difficult to compute, we may apply
the bound Ĩ(x, y) to calculate the best posterior mean estimate on average.

2.2 Tractable Choices of Variational Decoders

In Section 2.1 we discussed a simple variational approach to maximization of mu-
tual information in noisy channels, where the problem of optimizing the computa-
tionally intractable objective I(x, y) was transformed to optimization of a proper
lower bound on the objective criterion. It is intuitive that the tightness and the
tractability of the described lower bound (2.2) depends on a specific choice of the
variational distribution q(x|y). Here we discuss several of such choices, namely
structured and Gaussian variational posteriors.

First, we will show that by considering structured variational posteriors, we
may indeed improve on simple factorized variational approximations. Then we
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re-formulate the bound (2.2) for the special case when the variational decoder
is a linear Gaussian, and show that a specific way of optimizing the resulting
objective reduces to maximization of Linsker’s as-if Gaussian criterion (1.16).

2.2.1 Structured Decoders

If the codes y are predictive of the sources x (which is something that we hope to
achieve when we maximize the mutual information for the encoder parameters),
then p(x|y) will typically be sharply peaked around its mode. This motivates
a choice of simple (for example, uni-modal) approximations q(x|y) to the pos-
terior, which in practice may significantly reduce computational complexity of
optimization. In general, however, it is intuitive that the tightness of the bound
may depend on the choice of the decoder q(x|y). For computational and represen-
tational purposes it is often convenient to assume that the approximate posterior
q(x|y) in the variational bound (2.2) is factorized1 in x. Here we briefly describe
effects which such a choice of the decoder structure may have on the bound. We
also point out natural extensions of (2.2) to chain-type decoders, which overcome
some of the restrictions of the factorized assumption.

2.2.1.1 Effects of the Decoder Structure

First of all, to demonstrate an influence which a choice of the decoder structure
may have on the bound (2.2), we consider a simple case of factorized, mean-field
type decoders for a model with |x| input and |y| output variables. For illustration
purposes, we considered three decoders with different structures shown on Figure
2.1, so that

q(1)(x|y) =

|x|
∏

i=1

q(xi|y), q(2)(x|y) =

|x|
∏

i=1

q(xi|yi), q(3)(x|y) =

|x|
∏

i=1

q(xi),

(2.14)
where the products are computed over all the dimensions of x. Note that in all
these cases, different dimensions of the reconstructed vectors are conditionally
independent given the codes. Arguably, this makes the considered decoders in-
trinsically less powerful than the theoretically optimal decoder defined by the
true posterior p(x|y), where the source variables are generally conditionally de-
pendent. However, it is easy to see that the considered structural constraints on
q(x|y) may significantly simplify the resulting optimization procedures.

By computing the functional derivatives of the bound (2.2) with respect to
the specified decoders (2.14) subject to the normalizing constraints, it is easy to
show that for each of the three cases, the optimal variational distributions are
defined as

q(1)(xi|y) = p(xi|y), q(2)(xi|y) = q(2)(xi|yi) = p(xi|yi), q(3)(xi|y) = q(3)(xi) = p(xi).
(2.15)

1The assumption becomes particularly important when the set of possible vectors generated
by p(x) is exponentially large; for example, when x ∈ {0, 1}|x| and p(x) is uniform.
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p(y|x) q(1)(x|y) q(2)(x|y) q(3)(x|y)

Figure 2.1: Simple variational decoders. Left: A noisy encoder p(y|x); Right: con-

strained variational decoders q(1)(x|y), q(2)(x|y), and q(3)(x|y). The shaded nodes
correspond to the hidden encoded representations {y}. The transparent nodes cor-
respond to the sources {x} and their reconstructions. (Unless mentioned otherwise,
we will use the shaded nodes to indicate unobservable variables).

Then it is clear that for the variational decoder q(1)(x|y), the optimal achievable
bound (2.2) on I(x, y) is given by

Ĩ(1)(x, y) = H(x) −

|x|
∑

i=1

H(xi|y), (2.16)

where H(xi|y)
def
= −〈log p(xi|y)〉p(y|x)p(x). Analogously, for q(2)(xi|y) and q(3)(xi|y)

we obtain

Ĩ(2)(x, y) = H(x) −

|x|
∑

i=1

H(xi|yi), Ĩ(3)(x, y) = H(x) −

|x|
∑

i=1

H(xi), (2.17)

with the similar definitions of the conditional entropies. It is easy to see that
since the conditioning decreases the entropy (see e.g. Cover and Thomas (1991)),
and all the variables for the three models are defined on identical domains, we
get H(xi|y) ≤ H(xi|yi) ≤ H(xi). This leads to the intuitive relation

I(x, y) ≥ Ĩ(1)(x, y) ≥ Ĩ(2)(x, y) ≥ Ĩ(3)(x, y), (2.18)

which demonstrates that simplifications of the decoder structure (see Figure 2.1)
result in relaxations of the theoretically achievable lower bounds.

In the case that the codes y contain little information about the sources x
(for example, if the channel noise is high or dimensionality of the codewords
|y| is low), factorized uni-modal approximations of the posterior p(x|y) may be
quite restrictive. In this case we may expect that a decrease in the theoretically
optimal bound due to a sub-optimal choice of the decoder structure may be quite
significant.

Example: To demonstrate the effects numerically, we have considered a simple
binary model with |x| = 2 source and |y| = 2 output variables. The encoder
mapping was defined in such a way that both units y1, y2 ∈ {0, 1} were solving
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a noisy XOR problem with the noise levels ǫ1 = 0.2 and ǫ2 = 0.3. The channel
probabilities for this case were defined as p(yi = 1|x1 = x2) = ǫi and p(yi =
1|x1 6= x2) = 1 − ǫi, where the conditioning indicates whether the source units
x1, x2 ∈ {0, 1} are set to the same binary states. The source variable marginals
were defined as p(x1 = 1) = 0.2 and p(x2 = 1) = 0.5. It turns out that in this
case the exact value of the mutual information is given by I ≈ 0.3548, with the
bounds I(1) ≈ 0.1161, I(2) ≈ 0.0630, and I(3) = 0.

The result that a richer structure of a variational decoder q(x|y) leads to an im-
provement of the lower bound on I(x, y) is in full agreement with our expectations
and with (2.18). It is also related to previous results in approximate inference
and variational likelihood learning, which show that compared to the fully factor-
ized approximations, structured mean field models (e.g. Barber and Wiegerinck
(1998), Saad and Opper (2001)) often lead to tighter bounds on the log partition
function. We will now consider a simple choice of the decoder structure which
helps to go beyond the simple factorized approximations.

2.2.1.2 Chain Decoders

A possible limitation of the considered variational decoders q(x|y) is the factor-

ized assumption q(x|y) =
∏|x|

i=1 q(xi|y), which may lead to inaccurate approxi-
mations of the exact posterior. Specifically, for the factorized channel p(y|x) =
∏|y|

i=1 p(yi|x), the posterior p(x|y) is fully coupled in x (see Figures 2.2 (a), (b)).
While in some cases the factorized constraints may be plausible and indeed phys-
ically and computationally justifiable, in general they may be too restrictive.
Intuitively, the bound on I(x, y) could be made tighter by retaining some of the
structure in the specification of the variational distribution q(x|y). We will now
show how this may be achieved in the context of information maximization.

A straight-forward application of the chain rule for probabilities of multivari-
ate distributions

p(x) = p(x1)

|x|
∏

i=2

p(xi|x1, . . . , xi−1) (2.19)

leads to the corresponding rule for entropies

H(x) = −〈log p(x1)〉p(x) −

|x|
∑

i=2

〈log p(xi|x1, . . . , xi−1)〉p(x)

= H(x1) +

|x|
∑

i=2

H(xi|x1, . . . , xi−1). (2.20)

Analogously, by conditioning on y and averaging over p(y), we may obtain a
simple expression for the conditional entropy H(x|y):

H(x|y) = H(x1|y) +

|x|
∑

i=2

H(xi|x1, . . . , xi−1, y). (2.21)

30



A straight-forward application of the definition of the mutual information (1.6)
leads to

I(x, y) = I(x1, y) +

|x|
∑

i=2

I(xi, y|x1, . . . , xi−1), (2.22)

which is just a chain rule on the mutual information (see e.g. Cover and Thomas
(1991)). Equivalently, (2.22) may be expressed as

I(x, y) = H(x) + 〈log p(x1|y)〉p(x1,y) +

|x|
∑

i=2

〈log p(xi|x1, . . . , xi−1, y)〉p(x1,...,xi−1,y).

(2.23)
Clearly, the marginal entropy H(x) in (2.23) is independent of the encoder

distribution p(y|x) and therefore has no effect on the optimization surface. How-
ever, the complexity of evaluating each average of log p(xi|x1, . . . , xi−1, y) over
the joint distribution p(x, y) is in general exponential in the number of parents
of each variable xi. One obvious way to bound the mutual information in a
tractable way, while retaining some of the structure of p(x|y) in (2.23), would be
to limit the number of parental connections in the variational approximation of
p(xi|x1, . . . , xi−1, y). If πx(xi) ⊆ {xi|i = 1, . . . , |x|}, πy(xi) ⊆ {yi|i = 1, . . . , |y|}
are the x− and y−parents of the ith reconstructed variable xi, we may define the
variational distribution to satisfy

q(xi|{x}\xi, {y}) = q(xi|π
x(xi),π

y(xi)). (2.24)

It is clear that the definition (2.24) formally generalizes (2.15). Moreover, in
general the resulting conditional q(x|y) is not factorized in xi (see Figure 2.2).

It is easy to see that the choice of (2.24) gives rise to the bound

I(x, y) ≥ Ĩ(x, y)
def
= H(x) +

∑

i

〈log q(xi|π
x(xi),π

y(xi))〉p(xi,πx(xi),πy(xi)), (2.25)

Clearly, if the number of parents |πx(xi)| + |πy(xi)| is small, the summations
in (2.25) may be performed exactly (for discrete domains) or efficiently approx-
imated numerically (e.g. by using standard techniques of numerical integration
for continuous domains). A simple structured decoder can be characterized by a
sparse mapping from y to x and a chain in the x’s (see Figure 2.2), though any
choice of parents satisfying the tractability constraints is possible. In general, an
extra care must be taken to ensure that q(x|y) remains a proper distribution (i.e.
its graph does not have directed cycles). Clearly, some of the possible choices for
the variational decoder q(x|y) are trees or higher-order Markov chains, with an
additional constraint on |πy(xi)|.

By analogy with the simple factorized example (2.15) described above, by com-
puting functional derivatives of the bound (2.25) with respect to q(xi|π

x(xi),π
y(xi))

subject to the normalization constraints, we can easily find that the optimal set-
tings would give rise to q(xi|π

x(xi),π
y(xi)) = p(xi|π

x(xi),π
y(xi)). This would

lead to the optimal theoretically achievable lower bound

I(x, y) ≥ H(x) −
∑

i

H(xi|π
x(xi),π

y(xi)). (2.26)
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(a)

(b) (c)

Figure 2.2: Structured variational decoders. (a) A noisy encoder p(y|x); (b) the
corresponding fully-structured exact decoder p(x|y); (c) a sparse variational decoder
q(x|y). The shaded nodes correspond to the encodings {y}. The sparse variational
decoder retains some of the structure of the exact posterior p(x|y).

(compare with (2.23)). Again, from the non-negativity of the KL divergence it is
easy to see that unless the variables in πx(xi),π

y(xi) are independent, the con-
ditioning on additional variables always decreases the entropy, independently of
the specifics of channel parameterization. Therefore, by retaining more structure
in the variational decoders, we are guaranteed to improve on the theoretically
achievable lower bounds on I(x, y).

Finally, note that even in the cases when the models are defined over discrete
spaces with finite alphabets of the code and source variables, it may be difficult
to compute the entropic terms in (2.26); for example, this may happen when
averaging over p(x) is expensive. However, by imposing sparsity constraints on
the encoding distribution p(y|x), we may be able to perform the computations
exactly (see the discussion in Section 7.2.2). Obviously, for continuous variable
spaces it is necessary to impose additional parametric constraints on p(y|x) and
q(x|y).

2.2.2 Gaussian Decoders and the Link to Linsker’s Criterion

Here we consider a special case of the bound Ĩ(x, y) for linear Gaussian vari-
ational decoders. We also show that optimization of Linsker’s as-if Gaussian
objective (Linsker (1992)), approximating the exact mutual information I(x, y),
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corresponds to a special way of optimizing the variational lower bound Ĩ(x, y)
independently of the choice of the encoder distribution p(y|x).

Let us define the variational decoder to be a Gaussian q(x|y) ∼ Nx(Uy,Σ),
where U ∈ R

|x|×|y|. Clearly, in this case the variational lower bound (2.2) is
expressed as

Ĩ(x, y) = 〈log q(x|y)〉p(y|x)p(x) + H(x)

= −
1

2

〈
tr

{
Σ−1(x − Uy))(x − Uy))T

}〉

p(y|x)p(x)
−

1

2
log |Σ| + c,(2.27)

where c is an irrelevant constant. One way to optimize (2.27) would be by ap-
plying the iterative IM algorithm for the encoder p(y|x) and parameters of the
decoder U, Σ. Alternatively, at the first iteration of the algorithm we may utilize
Gaussianity of the decoder q(x|y) to find analytical expressions of the parameters
U and Σ, expressing them as functions of the fixed encoder p(y|x). By substi-
tuting the results into (2.27), we may re-define the bound as a function of the
encoder alone. Then the new objective function may be optimized numerically
with respect to encoder parameters. It turns out that this approach to maxi-
mizing the lower bound (2.27) leads to optimization of Linsker’s as-if Gaussian
criterion (1.16).

Proposition 2.3. For any channel p(y|x), optimization of Linsker’s as-if Gaus-

sian criterion IG(x, y)
def
= − log

∣
∣〈xxT 〉 − 〈xyT 〉〈yyT 〉−1〈yxT 〉

∣
∣ for the encoder pa-

rameters corresponds to a specific way of optimizing the variational lower bound
on the mutual information Ĩ(x, y) = 〈log q(x|y)〉p(y|x)p(x) with linear Gaussian de-
coders2 q(x|y) ∼ Nx(Uy,Σ).

Proof. Optimizing (2.27) for the decoder covariance Σ (assumed to be non-
singular), we obtain the extremum condition

Σ−1
〈
(x − Uy)(x − Uy)T

〉

p(x)p(y|x)
Σ−1 = Σ−1. (2.28)

Clearly, this results in the optimal decoder’s covariance

Σ =
〈
(x − Uy)(x − Uy)T

〉

p(x)p(y|x)
. (2.29)

It is easy to verify that (2.29) is indeed a maximum. Substitution into (2.27)
leads to

Ĩ(x, y) ∝ − log
∣
∣
∣

〈
(x − Uy)(x − Uy)T

〉

p(x,y)

∣
∣
∣ , (2.30)

where we ignored irrelevant additive and multiplicative constants. Computing
the derivatives for the decoder weights U, we obtain

Σ−1〈xyT 〉 = Σ−1U〈yyT 〉. (2.31)

Assuming that 〈yyT 〉 ∈ R
|y|×|y| is non-singular (e.g. this is the case when the num-

ber of linearly independent codes exceeds their dimensionality), we may express

2Here we will focus on the discussion of the centered data and centered codes, i.e. 〈x〉 = 0,
〈y〉 = 0. The more general case may be obtained analogously by considering variational decoders
of the form q(x|y) ∼ Nx(U(y − 〈y〉),Σ) (see a brief discussion in Appendix A).
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the optimal weights as U = 〈xyT 〉〈yyT 〉−1 ∈ R
|x|×|y|. By substituting the optimal

decoder weights into (2.30), we obtain the objective function

Ĩ(x, y) = − log
∣
∣〈xxT 〉 − 〈xyT 〉〈yyT 〉−1〈yxT 〉

∣
∣ , (2.32)

which, up to irrelevant constants, is exactly the Linsker’s Gaussian criterion
(1.16).

In general the described modification of the objective criterion may complicate
the analysis of optimal solutions, as (2.32) may be highly nonlinear in the encoder
parameters. Moreover, by expressing the bound as a function of the encoder
alone, we may change the optimization surface (for example, if the bound is not
a convex function of encoder parameters), which may affect the obtained optima.
Nevertheless, by an argument similar to Proposition 2.1, it is easy to see that
the described optimization procedure is guaranteed not to weaken Ĩ(x, y), though
the obtained solutions will depend on the specifics of the optimization strategies
used.

Finally, we stress once again that optimization of the as-if Gaussian approxi-
mation of the mutual information (Linsker (1992)) corresponds to one specific way
of optimizing the variational lower bound Ĩ(x, y) under the specific assumption
that the variational decoder is a linear Gaussian. It is clear that the variational
formulation is a powerful generalization of Linsker’s approach. First, the generic
lower bound (2.2) gives us a flexibility in choosing the family of decoder distri-
butions Q. Secondly, for any decoder in the family q(x|y,Θ) ∈ Q, we a free to
choose a specific optimization procedure for the encoder and decoder parameters.
Optimization of Linsker’s bound corresponds to one of such choices for the family
of linear Gaussian decoders. As we show in the following sections, by considering
a richer family of variational decoders (and in fact a richer family of bounds on
the mutual information) we may significantly improve on simple approximations.

2.3 An Auxiliary Variational Lower Bound on Mu-

tual Information

In section 2.2.1 we showed that by retaining in the variational decoder q(x|y)
some of the local sub-structure of the fully-coupled exact posterior p(x|y), we
could indeed obtain tighter bounds on the mutual information. We also noted
that under the specific structural constraints, the computations should indeed
remain tractable, thus resulting in simple ways of improving on factorized mean
field bounds on the mutual information. Here we discuss a formal generalization
of structured bounds on I(x, y) for mixture-of-experts type decoders.

2.3.1 Representations

A possible way to further improve on the structured bounds (2.25) is to increase
the representational power of structured variational decoders q(x|y) by capturing
global dependencies between the reconstructed variables. One way to achieve it is
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Figure 2.3: A noisy channel p(y|x) with a structured mixture-type decoder q(x|y).
(The states of the reconstructed variables are denoted by x̃). The role of the auxiliary
variables z is to introduce additional structure into the decoder; they are not trans-
mitted across the channel p(y|x) and do not explicitly constrain p(x, y). The dashed
lines show the mappings to and from the auxiliary space. The auxiliary node is shown
by the double circle.

to consider multi-modal decoders q(x|y) = 〈q(x|y, z)〉q(z|y), where the introduced
auxiliary variables z are effectively the unknown mixture labels. Effectively, this
choice of the variational decoder corresponds to a form of mixture-of-experts-
type models (Jacobs et al. (1991), Neuneier et al. (1994), Bishop (1994), Bishop
(1995)) for modeling of the conditional distributions. Clearly, the fully-coupled
structure of the resulting variational distribution q(x|y) will qualitatively agree
with the dependency structure of the exact posterior, as different dimensions of
the reconstructed vectors x would be coupled through the auxiliary variables z.
Moreover, for any interesting choice of the auxiliary space {z}, the decoder q(x|y)
will typically be multi-modal, which would agree with the common mixture-type
structure of p(x|y) (see (1.8)). We may therefore intuitively hope that this choice
of the variational posterior will generally result in tighter bounds on I(x, y).

Despite the apparent merits of the mixture-type variational decoder q(x|y), its
possible disadvantage relates to the fact that specifying the conditional mixing
coefficients q(z|y) in a principled manner may be rather difficult. Moreover, if
the auxiliary variables z are conditionally independent from the original source
patterns given the codes, any noise in the stochastic encodings y will affect deter-
mining of the mixing states. Intuitively, this may have an overwhelming negative
effect on decoding, which may cause relaxations of the bound on I(x, y). We may
therefore wish to reduce the effects which the noise in the encodings has on the
specification of the decoder q(x|y).

One way to address this matter is by introducing an additional mapping to
the auxiliary variable space p(z|x, y), which may be thought of as an additional
variational parameter (see Figure 2.3). Indeed, even when the channel is noisy,
the conditional dependence of the auxiliary variables z on the unperturbed source
patterns could result in an accurate detection of the states of the auxiliary vari-
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ables. Note that the auxiliary conditional distribution p(z|x, y) is defined in a way
that does not affect the original noisy channel p(y|x), as the channel would remain
a marginal of the joint distribution of the original sources, codes, and auxiliary
variables

p(x, y, z) = p(x)p(y|x)p(z|x, y). (2.33)

The role of the auxiliary variables z in this context would be to capture global
features of the transmitted sources, and use these features for choosing optimal
experts in the mixture-of-experts type3 decoder. Importantly, the auxiliary vari-
ables z are not transmitted across the channel. Their purpose here is to define a
richer family of bounds on I(x, y) which would generalize over the simpler bounds
(2.16)–(2.17), (2.25) with factorial or structured variational decoders.

It is easy to see that for an unconstrained choice of the variational parame-
ters, a straight-forward application of the generic bound (2.2) for the discussed
formulation of the mixture-type decoder may result in generally intractable in-
tegrals over x and y. A simple way to handle the intractability is to consider
further variational relaxations of the lower bound (2.2) by constraining all the
variational distributions to be tractable. We will now show that this indeed leads
to a tractable generalization over (2.2).

2.3.2 An Auxiliary Variational Lower Bound on I(x, y)

An auxiliary variational lower bound on I(x, y) may be obtained by considering
the general properties of the mutual information. It may also be shown that the
resulting bound corresponds to a tractable variational relaxation of the generic
form (2.2) for the mixture-of-experts type decoders.

Let p(x, y, z) define a general joint distribution over the sources x, the encod-
ings y, and the auxiliary variables (features) z, where we parameterize the original
channel p(y|x) and the auxiliary variational conditional p(z|x, y), and assume that
p(x) is known and fixed (see expression (2.33) and Figure 2.3). From the chain
rule for mutual information (2.22), we may express I(y, x) as

I(y, x) = I({z, y}, x) − I(x, z|y), (2.34)

where
I({z, y}, x)

def
= H(x) − H(x|z, y) (2.35)

is the amount of information that the features z and codes y jointly contain about
the sources, and

I(x, z|y)
def
= H(z|y) − H(z|x, y) (2.36)

is the conditional mutual information. Substituting (2.35) and (2.36) into (2.34),
we obtain a general expression of the mutual information I(x, y) as a function of
conditional entropies of the sources, codes, and auxiliary variables

I(y, x) = H(x) + H(z|x, y) − H(x|y, z) − H(z|y). (2.37)

3One may immediately notice that the optimal unconstrained variational distribution of the
mixing labels q(z|y) of the decoder q(x|y) = 〈q(x|y, z)〉q(z|y) should itself be a mixture-of-experts
model, defined as q(z|y) = 〈p(z|x, y)〉p(x|y). This is confirmed at a later stage (see the objective
(2.38)).
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Clearly, H(x) in (2.37) is not a function of the channel parameters, and it
may be safely ignored for the purpose of learning the optimal encoder p(x|y).
The entropic term H(z|x, y) = −〈log p(z|x, y)〉p(z,x,y) is a functional of the auxil-
iary conditional mapping to the feature space p(z|x, y), which may be chosen to
lie in a tractable family (or defined to be a deterministic function of x and y).
Computations of the remaining terms in (2.37) are in general problematic, as
both posteriors p(x|y, z) and p(z|y) are effectively mixture distributions (coupled
in x and z respectively). However, by analogy with (2.2) we may bound both
terms, which would result in

I(x, y) ≥ H(x) + H(z|x, y) + 〈log q(x|y, z)〉p(x,y,z) + 〈log q(z|y)〉p(y,z). (2.38)

This may be further recognized as a variational relaxation of the generic criterion
(2.2) for a mixture-of-experts decoder q(x|y) = 〈q(x|y, z)〉q(z|y), where the auxil-
iary variational conditional p(z|x, y) plays the role of the additional variational
parameter.

Again, to ensure that the averages in (2.38) are tractable, we need to con-
strain the variational decoders q(x|y, z) and q(z|y) (in addition to constraining
the auxiliary mapping p(z|x, y)). The objective (2.38) needs to be optimized for
the channel encoder, variational decoder, and the auxiliary conditional distribu-
tions, subject to the imposed constraints. One way to perform the optimization
is by considering a straight-forward extension of the variational IM algorithm
to include the auxiliary mappings. By analogy with proposition 2.1, it is easy
to show that the resulting iterative optimization procedure maximizes or leaves
unchanged the bound on the mutual information I(x, y). Note that the role of
the auxiliary vectors z in this context is to capture global dependencies in the re-
constructed variables; the auxiliary variables are not transmitted across the noisy
channel, which for our case is defined by p(y|x).

It is important to note that the objective (2.38) is a formal generalization
of the generic lower bound on the mutual information. Indeed, it is clear that
if z is a vector of deterministic variables taking a single state, the bound (2.38)
reduces to H(x) + 〈log q(x|y)〉p(x,y) (cf expression (2.2)). Simpler special cases of
the objective may be obtained by imposing further constraints on p(z|x, y) and
q(z|y). For example, by constraining the variational distribution of the coefficients
to be q(z|y) ≡ q(z), we may obtain a mixture bound on I(x, y) as a special case.
By further considering a constrained auxiliary mapping p(z|x, y) ≡ p(z|y), we may
transform (2.38) to the Jensen’s relaxation of (2.2) for mixture decoders, etc.

In a more general case, the resulting decoder q(x|y) = 〈q(x|y, z)〉q(z|y) is a
generalization of the mixture-of-experts model, in the sense that the variational
prior over the mixing coefficient q(z|y) is itself a mixture. Indeed, from (2.38)
it is clear that the local unconstrained optimization for the mixture prior leads
to q(z|y) = p(z|y), as expressed from the channel p(y|x)p(x) and the auxiliary
variational conditional p(z|x, y). As the exact decoder p(x|y) will typically have a
mixture form with the data-dependent coefficients (see expression (1.9)), we may
informally hope that a choice of a multi-modal variational decoder will generally
lead to tighter bounds on I(x, y).
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One may further extend (2.38) by considering models with a richer hierarchy,
though an extra care should be taken to ensure tractability. For example, in
order for the bound (2.38) to be computationally tractable, one may need to
impose additional structural constraints on the conditionals, analogous to the
ones discussed in section 2.2.1. For example, if πx(zi) ⊆ {x}, πy(zi) ⊆ {y} are
lower-dimensional x- and y- parents of zi, one may consider a sparse factorized
form of the auxiliary conditional

p(z|y, x) =
∏

i

p(zi|π
x(zi),π

y(zi)). (2.39)

In this case, the entropic term −H(zi|x, y) may be exactly expressed as

〈log p (zi|π
x(zi),π

y(zi))〉p(zi,πx(zi),πy(zi))
=

∑

ηx(zi)

∏

k∈ηx(zi)

p(xk)
∑

πy(zi)

∏

j∈πy(zi)

p(yj|π
x(yj)) ×

∑

zi

p(zi|π
x(zi),π

y(zi)) log p(zi|π
x(zi),π

y(zi)),

(2.40)

where ηx(zi)
def
= πx(πy(zi)) ∪ πx(zi) and the definition of the parents π was

extended for sets of variables in the obvious manner. As before, tractability
of this computation may be ensured by choosing an appropriate parameteriza-
tion (or imposing appropriate sparse structural constraints on discrete models).
Analogously, we may choose a tractable structure for the remaining variational
parameters q(z|y) and q(x|y, z).

2.4 Summary

We described a general theoretically justified approach to information maximiza-
tion in noisy channels, which extends the family of Blahut-Arimoto type algo-
rithms (Arimoto (1972), Blahut (1972)) by considering a constrained tractable
family of decoder distributions. We also showed that the constraints are funda-
mentally important for avoiding intractability of computing and optimizing the
mutual information in the presence of noise. By constraining the approximate
posterior, we effectively re-define the optimized objective criterion to be a proper
variational lower bound on the mutual information. The suggested iterative op-
timization procedure, the IM algorithm, is guaranteed not to weaken the bound,
and has a form reminiscent of the variational EM algorithm for approximate
likelihood maximization.

Whilst the generic formulation of the objective criterion is straightforward, it
appears to have attracted little previous attention as a practical tool for max-
imizing mutual information. The suggested formulation is conceptually simple
and general; moreover, it implies optimization of a proper lower bound, rather
than an approximation of the true mutual information. The generality of the
approach allows a flexibility in the choice of variational decoders or specific op-
timization procedures, which suggests that the method may naturally generalize
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other techniques for approximate information maximization. Indeed, we showed
that optimization of Linsker’s as-if Gaussian objective criterion (Linsker (1992))
corresponds to a specific way of optimizing the variational lower bound on mutual
information for a specific choice of linear Gaussian decoders.

Furthermore, we considered extensions of the simple bound on I(x, y) to the
case of structured decoders, and showed that by retaining local dependencies, we
could indeed tighten the theoretically achievable lower bounds on I(x, y).

Finally, we introduced a new auxiliary variational approach to information
maximization. The key idea of the suggested auxiliary method is to introduce
additional variables, which may be used for capturing useful features of the source
patterns, and for introducing global dependencies to the decoded sources. Impor-
tantly, the variables and the projections to the auxiliary space are defined in a
way which does not impose explicit constraints on the original channel. It is intu-
itive that these richer representations help to retain some of the structure (and,
for the auxiliary formulation, multimodality) of the exact decoder. Moreover,
for any constrained choice of the variational distributions q(x|y, z), they include
simpler generic bounds as special cases. We will subsequently confirm that this
more general family of bounds may indeed significantly improve on simpler ap-
proaches. However, first we will discuss general relations between optimizing the
mutual information in encoder models of noisy channels, optimizing the likelihood
in generative latent variable models, and optimizing the conditional likelihood in
stochastic autoencoders.
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Chapter 3

Likelihood, Conditional Likelihood,

and Information Maximization

3.1 Introduction

The problem of finding informative lower-dimensional representations of the ob-
served data may be addressed in a number of different ways. One way to model a
relationship between hidden and visible variables (codes and sources) y and x is by
considering a generative model, and training it by maximizing the likelihood1 L.
By trying to fit the empirical distribution (subject to the modeling constraints),
generative models tend to find latent representations which could be useful for
generating the observed patterns. The lower-dimensional latent-space represen-
tations may then be obtained by applying Bayes rule. A classic alternative to
generative models for finding informative codes is given by the self-extracting
autoencoder-type networks, where the sources x are passed through the bottle-
neck of hidden variable representations y, and extracted at the decoding end to
yield the reconstructions x̃. A standard approach is to train such models by min-
imizing the reconstruction error, which under certain modeling assumptions may
be seen as conditional likelihood learning (Bishop (1995)).

In a sense, generative latent variable models y → x and autoencoders x →
y → x̃ may be viewed as useful frameworks for finding informative hidden vari-
able representations of the data. However, an arguably more principled measure
of informativeness is given by the mutual information I(x, y), defined as an av-
erage reduction in uncertainty of one variable given the other in the stochastic
encoder model x → y. The fundamental Fano’s result (Fano (1961)) states that
independently of the specific parameterization of a (discrete) encoder distribu-
tion, the probability of incorrect reconstruction of the sources x from the codes y
is bounded by the negative mutual information as

pe(x̃ 6= x) ≥ (H(x) − I(x, y) − 1) / log M ∈ [0, 1], (3.1)

where M is the number of possible distinct reconstructions (size of the input
alphabet). In other words, in discrete channels the mutual information I(x, y)

1As a monotonic transformation of an objective function does not affect the optimization
surface, we will sometimes use the term likelihood to refer to the scaled log-likelihood.
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is lower-bounded by the probability of the correct reconstruction2. Intuitively,
this result suggests a relation between information maximization and conditional
likelihood training in stochastic autoencoders, where the projection into the code
space corresponds to the noisy encoding distribution of a channel model. It is
interesting to try to understand how all these seemingly different measures relate
to each other in completely general settings.

While in some specific cases likelihood and mutual information may indeed
have identical optima (see e.g. Cardoso (1997) for a discussion of the noiseless
squared ICA case), the optimization surfaces which they define seem to be very
different in general. One may understand conceptual differences between the op-
tima provided by likelihood and mutual information maximization for the case of
mixture models, where y is a hidden mixture index and x is a visible pattern. It is
well known that the likelihood may be trivially maximized by fitting a component
to a local segment of the data (as small as a single pattern), provided that the
other patterns are explained by the remaining components. One may think of
this as an artifact of the definition of the likelihood for under-constrained mod-
els (where the theoretically optimal unconstrained model is simply the empirical
distribution). Intuitively, such solutions should be suboptimal in the information
theoretic sense, as they would not be useful for reconstructing most of the source
patterns. Analytically, they would result in a decrease in the marginal entropy
of the codes H(y), leading to a general reduction in I(x, y). On the other hand,
maximization of mutual information in unconstrained models may result in differ-
ent forms of trivial optima, which may be characterized by noiseless projections
of the training patterns to maximally uniform encodings.

In principle, for any specific parameterization of the generative and encoder
(recognition) models, the solutions provided by the likelihood and mutual in-
formation maximization may be related by comparing the specific extrema con-
ditions for the parameters. Most of the previous work on relating maximum-
likelihood learning in generative models and autoencoders to the information-
theoretic learning in encoder models of noisy channels focused primarily on spe-
cific invertible mappings (Pearlmutter and Parra (1996), Cardoso (1997), MacKay
(1999b)), or constrained linear models (Cottrell et al. (1987), Baldi and Hornik
(1989), Oja (1989)). Other more recent work addressed the problem of finding
links between a different, but somewhat related family of Information Bottleneck
approaches and the maximum likelihood methods for a specific tractable mixture
model (Slonim and Weiss (2002)). Our goal here is to discuss a relation between
maximum-likelihood and information-maximization methods for both exact and
approximate cases, independently of the specific parameterizations (see Section
3.2). Then in Section 3.3 we will compare mutual information maximization with
the conditional likelihood training of feed-forward models.

2Note that originally Fano’s inequality was derived under the assumption of discrete source
variables x and deterministic reconstructions from the encoded representations, i.e. H(x̃|y) = 0,
see e.g. Fano (1961), Cover and Thomas (1991).
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Figure 3.1: Generative and encoder models. (a): A generative model ML
def
=

p(y)p(x|y) trained by maximizing the likelihood L; (b): a model of a noisy chan-

nel MI
def
= p̃(x)p(y|x) (trained by maximizing the mutual information I(x, y)). The

shaded nodes correspond to the hidden variable representations y.

3.2 Information Maximization and Maximum Like-

lihood

There are fundamental conceptual differences in how we parameterize and train
generative and recognition models. In order to define a generative latent variable
model ML, we need to specify the prior on the latent codes p(y|Θy), and the
conditional distribution of the observations given the codes p(x|y, Θx|y) (see Figure
3.1 (a)). Throughout the discussion, we will assume that p(Θy) ∼ δ(Θy − Θ⋆

y)
and p(Θx|y) ∼ δ(Θx|y − Θ⋆

x|y) (for some optimal settings Θ⋆
y, Θ

⋆
x|y), and drop the

conditioning on the parameters Θy, Θx|y. The distribution of the data under
the model is given by the marginal p(x) = 〈p(x|y)〉p(y). As discussed earlier,
we may train such models by maximizing the log-probability of generating a

fixed set of observations L
def
= log p({x(1), . . . , x(M)}), subject to the constraints

on p(y) and p(x|y). Obviously, for independent identically distributed patterns,
maximum likelihood training corresponds to minimization of the Kullback-Leibler
divergence between the empirical distribution and the model of the observations
p(x).

In contrast, to specify a recognition model, we need to define the distribution
of the sources p̃(x) and the generally noisy encoder p̃(y|x) (see Figure 3.1 (b)). In
a vast number of practical applications of information-theoretic training of such
models, it is presumed that p̃(x) is the empirical distribution (see e.g. Fano (1961),
McEliece (1977), Linsker (1989a), Nadal and Parga (1994), Bell and Sejnowski
(1995), Linsker (1997), Principe et al. (2000), Torkkola and Campbell (2000),
Torkkola (2001), Szummer and Jaakkola (2002)). Here we will focus primarily
on the discussion of this case. In principle, we may parameterize the encoder
p̃(y|x) arbitrarily, as it is a part of the model’s specification. However, for the
purpose of comparing the maximum-likelihood training in generative models with
the mutual information maximization in noisy channels, we will set p̃(y|x) to be
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the exact posterior of ML, i.e. p̃(y|x) ∝ p(x|y)p(y). (For simplicity, we will
assume that we can compute and average over the posterior p(y|x), i.e. p(x, y) is
in a tractable family – we will discuss a variational extension of this case at a
later stage). Effectively, this setting indicates equivalence of the inference under
MI and ML for identical parameter settings; furthermore, both the likelihood3 L
and the mutual information I(x, y) will be functionals of the same distributions,
p(y) and p(x|y).

To summarize, the distributions defined by the generative and encoder models
for the considered case would be given by

ML
def
= p(y)p(x|y), MI

def
= p̃(x)p(y|x), p̃(x) ∝

M∑

i=1

δ(x − x(i)) (3.2)

respectively. For these otherwise unconstrained settings, we will be interested in
finding a simple relation between maximization of the mutual information I(x, y)
in the channel MI and maximization of the log-likelihood L in the corresponding
latent variable model ML. In the rest of this section, by referring to a specific
objective function (I or L) we will also implicitly refer to the corresponding
model.

There are obvious practical implications of relating these two modeling meth-
ods. Indeed, let us assume that we are given parametric constraints on p(y) and
p(x|y), and a set of training patterns {x}. If our goal is to find the most in-
formative latent variable representations {y} of the training set {x}, an obvious
approach would be to maximize the mutual information in MI . However, as
discussed in Section 1.3, the exact optimization would typically be intractable,
and approximations or tractable lower bounds on I(x, y) would need to be con-
sidered. Such tractable bounds may prove to be weak, which may nullify the
initial advantage of trying to optimize a proper measure of information in the
first place. In contrast, it is usually significantly easier to maximize the likeli-
hood in the corresponding generative model, and classic probabilistic methods of
maximum-likelihood training may eventually prove to be better (in terms of the
retained information content) than optimizing any tractable relaxation of I(x, y).
We will now show that this is generally not the case (at least, not in terms of
relaxations of the exact mutual information), and we may indeed consider opti-
mizing a special tractable form of the variational lower bound on I(x, y) in order
to maximize the amount of information which {y} contain about {x}.

3.2.1 Variational Information Maximization and Exact Likeli-

hood Training

Let us assume that the data is i.i.d., and the models are defined as in expression
(3.2). Then it is easy to show that the exact likelihood, expressed from the

3We extend Fisher’s view of the likelihood (Fisher (1925)) and treat it as a functional of
the model p(x) under the specified modeling constraints. In other words, for us it would make
perfect sense to integrate the likelihood over distributions of random variables. To indicate the
dependence on the functional parameters, we will sometimes denote the likelihood as L(p(x)).
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generative model ML, is a lower bound on the exact mutual information in the
corresponding memoryless communication channel MI (up to irrelevant constants
which have no effects on the optimization). It is also straight-forward to see that
for any tractable choice of ML, it is possible to define a tractable lower bound
on I(x, y), which is at least as tight as the likelihood. Intuitively, this means that
by maximizing the likelihood in generative models, we indeed maximize a proper
lower bound on the mutual information in the corresponding channel, but we do
it suboptimally in terms of the retained information content. This also suggests
a tractable information-theoretic alternative to maximum-likelihood training.

Proposition 3.1. For i.i.d. patterns {x}, maximum likelihood training in the
generative model ML corresponds to maximization of a lower bound on the
mutual information in MI . Up to irrelevant constants, this bound is weaker or
as tight as Î(x, y) = 〈log p(x|y)〉p(y|x)p̃(x).

Proof. The results follow immediately from applying straight-forward transfor-

mations of the likelihood. Let {x}
def
= {x(i)|i = 1, . . . ,M} denote a set of training

patterns. For i.i.d. data, the average log-likelihood is given by

L
def
= log p({x})/M = 〈log p(x)〉p̃(x)

= 〈log p(y) + log p(x|y) − log p(y|x)〉p̃(x) , (3.3)

where p̃(x) is the empirical distribution, and y is a latent variable in the joint
distribution p(x, y). By construction, p(y) and p(x|y) are parts of the model’s
specification which need to be learned, and the exact posterior p(y|x) is simply
given by Bayes rule. By averaging both parts of (3.3) over p(y|x), we obtain

L = 〈log p(x|y)〉p(y|x)p̃(x) − 〈KL(p(y|x)‖p(y))〉p̃(x) . (3.4)

Note that the non-negative Kullback-Leibler divergence term in (3.4) would have
reduced to the mutual information (expressed from ML), had the averages over
the empirical distribution p̃(x) been replaced by the averages over the true model-
based marginal p(x). (Indeed, by averaging (3.4) over p(x), we would recover the
well-known mean of average log-likelihood for i.i.d. data 〈L(x)〉p(x) = −H(x)).

We will now express I(x, y) in the corresponding model MI of a noisy mem-
oryless channel. It is easy to see that for the considered specification (3.2), the
exact mutual information in MI is given as

I(x, y) = Hp̃(x) − Hp̃(x|y) = Hp̃(x) + 〈log p̃(x|y)〉p(y|x)p̃(x), (3.5)

where Hp̃(x)
def
= −〈log p̃(x)〉p̃(x), Hp̃(x|y)

def
= −〈log p̃(x|y)〉p̃(x,y), and p̃(x|y) is the

Bayes-optimal decoder for the training patterns

p̃(x|y) ∝ p̃(y|x)p̃(x) = p(y|x)p̃(x), (3.6)

(as p̃(y|x) ≡ p(y|x) by construction). By definition, p̃(x) has a mixture form,
which leads to a mixture form for the decoder p̃(x|y). Generally, this complicates
evaluations of the conditional entropy Hp̃(x|y) in (3.5), which may be intractable
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Figure 3.2: Mutual information I(x, y), the variational lower bound Î(x, y), and the
exact log-likelihood score L(ML) in the parameter space Θ = {p(y), p(x|y)} (a
schematic plot). Intuitively, optimization of the tighter bound Î(x, y) on the gen-
erally intractable mutual information I(x, y) leads to a better estimate ΘÎ of the
I-optimal parameters ΘI . Heuristically, the tightness of a bound may be treated as
an approximate criterion of optimality.

even for the case of a tractable channel distribution p(y|x). By applying the
variational lower bound on the mutual information (2.2), we may bound (3.5) as

I(x, y) ≥ Hp̃(x) + 〈log p(x|y)〉p(y|x)p̃(x) (3.7)

≥ Hp̃(x) + 〈log p(x|y)〉p(y|x)p̃(x) − 〈KL(p(y|x)‖p(y))〉p̃(x) (3.8)

= Hp̃(x) + L ⇒ (3.9)

I(x, y) ≥ Î(x, y) ≥ Hp̃(x) + L, (3.10)

where the tighter lower bound on the mutual information is given by

Î(x, y)
def
= Hp̃(x) + 〈log p(x|y)〉p(y|x)p̃(x). (3.11)

Note that (3.11) is just the generic lower bound on the mutual information
(2.2) in MI , with the decoder given by the generative conditional p(x|y). Addi-
tionally, since p̃(x) is the empirical distribution, the entropic term Hp̃(x) in (3.10)
and (3.11) has no effect on the optimization surface for the encoder p(y|x). Thus,
up to irrelevant constants, the exact log-likelihood score L defines a proper lower
bound on I(x, y) in the recognition model MI . This bound is weaker than the
variational relaxation given by Î(x, y).

Proposition 3.1 shows that by maximizing the likelihood in ML we indeed
optimize a proper lower bound on the generally intractable mutual information
between the source patterns {x(i)|i = 1, . . . ,M} and their encodings {y(i)|i =
1, . . . ,M} generated by the exact posterior p(y|x). It also suggests that the like-
lihood bound on I(x, y) may in general be weak, which follows from the non-
negativity of the Kullback-Leibler term in (3.8). Intuitively, the weakness of the
bound may cause significant differences between solutions obtained by maximiz-
ing the likelihood and the mutual information (see the schematic plot of Figure
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3.2). More importantly, proposition 3.1 suggests that there exists a proper vari-
ational lower bound on the mutual information, which is (a): tractable (whenever
p(x, y) is in a tractable family); (b): tighter than the likelihood. This bound may
be used for information-theoretic training of both the encoder and the genera-
tive models specified by expression (3.2). Specifically, for training the generative
model ML, the idea would be to optimize (3.11) alone, which defines a tighter
bound on the exact mutual information. We may consider optimizing the same
bound4 for the encoder model MI . In fact, it is irrelevant whether we choose to
optimize (3.11) in MI or in ML, as in both cases we would be looking at the
same objective functional, optimized for the same set of functional parameters.

Note that the non-constant term in the variational lower bound Î(x, y) may
be thought of as an empirical estimate of the conditional entropy H(x|y), as
expressed from ML. Moreover, from (3.10) and (3.11) we get

Î(x, y) = L + 〈KL(p(y|x)‖p(y))〉p̃(x) + Hp̃(x), (3.12)

= 〈KL(p(y|x)‖p(y))〉p̃(x) − KL(p̃(x)‖p(x)) (3.13)

where the Kullback-Leibler term explicitly favours large average deviations of
the posteriors p(y|x) from the priors p(y) for a fixed set of training patterns {x}.
(Clearly, the term is minimized when the encodings y are independent of the
sources x). Note that Î- and L-learning are equivalent when the Kullback-Leibler
term in (3.12) is independent of the optimized parameters.

Informally, we can see that optimization of Î(x, y) corresponds to maximiza-
tion of the exact log-likelihood, with a certain bias towards deterministic and
spread-out encoded representations. Then by expanding (3.12), we get

Î(x, y) = L − 〈log p(y)〉p̃(y) −
M∑

i=1

H(p(y|x(i)))/M + Hp̃(x), (3.14)

where p̃(y)
def
= 〈p(y|x)〉p̃(x) is just the empirical average of the posterior (corre-

sponding to the marginal distribution of the codes in the recognition model MI).
The last term in (3.14) is an empirical average of the entropies of p(y|x(i)), which
favour deterministic encodings (i.e. sharp posteriors in generative models). To
show that the objective Î(x, y) indeed favours spread-out representations in {y},
we may once again make use of the non-negativity of the KL-divergence

〈log p̃(y)〉p̃(y) − 〈log p(y)〉p̃(y) ≥ 0 ⇒ −〈log p(y)〉p̃(y) ≥ H(p̃(y)). (3.15)

Substituting (3.15) into the objective (3.14), we obtain a relaxation of Î(x, y),
given by

Î(x, y) ≥ L + H(p̃(y)) −
M∑

i=1

H(p(y|x(i)))/M + H(p̃(x)). (3.16)

4Despite the fact that any tractable choice of the variational decoder q(x|y) could potentially
be used for training MI = p̃(x)p(y|x) (see expression (2.2)), not every such decoder may lead
to an improvement over the bound provided by the likelihood score. From proposition 3.1 we
see that one choice of the decoder when the improvement does happen is to set q(x|y) = p(x|y).
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Clearly, the entropy of p̃(y) =
∑M

i=1 p(y|x(i))/M in (3.16) would be maximized
for uniform representations of the training patterns in the code space {y}. Since
a proper lower bound on the objective criterion Î(x, y) biases the solutions to-
wards spread-out codes, one may informally hope that the objective Î(x, y) will
establish a similar behaviour. As we mentioned earlier, this bias towards a uni-
form distribution of the latent variables may be useful (for example, for avoiding
learning non-informative representations due to singularities and degeneracies of
maximum-likelihood solutions).

Example: It is easy to see that there are interesting cases when optimization
of the exact mutual information I(x, y) in the encoder model MI is intractable
despite the tractability of both p(y|x) and p(x|y). For a quick illustration of this,
let ML define the factor analysis model (e.g. Bartholomew (1987), Ghahra-
mani and Hinton (1996)), given as x = Wy + e; y ∼ N (0,1), p(e) ∼ N (0,Ψ).
Clearly, for this model we get p(x|y) ∼ N (Wy,Ψ), p(x) ∼ N (0, WWT + Ψ), and
p(y|x) ∼ N ((I + WTΨ−1W)−1WTΨ−1x, (I + WTΨ−1W)−1). Note that for the cor-
responding encoder model MI , it is intractable to optimize the exact mutual
information (3.5), as this would require evaluation of the entropy of a mixture
of Gaussians. On the other hand, it is computationally tractable to optimize
the variational lower bound Î(x, y) on the mutual information, as this would
only require computing Gaussian and empirical averages of the quadratic terms
〈yxT 〉p(y|x)p̃(x), 〈yy

T 〉p(y|x)p̃(x). By substituting p(x|y) and p(y|x) into the expressions

for L and Î(x, y), we obtain generally different objective criteria. In the special
case of Ψ = σ2I, the relation between the Î- and L-optimal weights may be easily
established analytically; in fact, for this special case both objectives would give
rise to PCA solutions for W.

Another example, illustrating differences between likelihood and information-
theoretic training, is discussed in Section 5.2.1. There we compare L- and Î-
maximization for training Gaussian mixture models.

3.2.2 Variational Information Maximization and Variational Like-

lihood Training

We have shown that optimization of the exact likelihood in the generative model
ML = p(y)p(x|y) may be motivated in the variational information-theoretic sense
(though the likelihood bounds on I(x, y) may potentially be weak). We have also
discussed a simple re-definition of the objective criterion which would lead to a
tighter variational lower bound on the mutual information in the corresponding
encoder model MI . These theoretical results are intuitive, but limited to the cases
when it is possible to compute and average over the posterior p(y|x). However,
for more general latent variable models, it may be intractable to maximize the
likelihood L or the bound Î(x, y) directly.

The usual way to handle the intractability of exact maximum likelihood learn-
ing in the generative model ML is to consider the standard variational lower
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bound on the likelihood

L =

〈

log

∫

y

p(x, y)dy

〉

p̃(x)

=

〈

log

∫

y

p(x, y)
q(y|x)

q(y|x)
dy

〉

p̃(x)

≥ L̃,

where we have defined

L̃ = 〈log p(x, y)〉q(y|x)p̃(x) − 〈log q(y|x)〉q(y|x)p̃(x)

= 〈log p(x|y)〉q(y|x)p̃(x) − 〈KL(q(y|x)‖p(y))〉p̃(x). (3.17)

Here p̃(x) is the empirical distribution, and q(y|x) is an arbitrary variational dis-
tribution approximating the true posterior p(y|x) (see Zemel and Hinton (1994),
Zemel and Hinton (1995), Dayan et al. (1995) for the related Helmholtz ma-
chine formulation, and e.g. Saul et al. (1996), Jaakkola (1997) for the gen-
eral statement of the variational problem). The standard variational extensions
of the expectation-maximizing algorithm (see e.g. Neal and Hinton (1998))
train the generative model ML by iteratively optimizing (3.17) with respect
to the model parameters p(y), p(x|y), and the variational posterior q(y|x). In
order to simplify computations of the bound (3.17), the variational distribu-
tion q(y|x) is constrained to ensure tractability of computing the average energy
〈log p(x, y)〉q(y|x), which for directed latent variable models implies tractability of
computing 〈log p(x|y)〉q(y|x) and 〈log p(y)〉q(y|x).

In order to compare variational approaches to maximization of the likelihood
and mutual information, we will define a recognition model

M̃I
def
= q(y|x)p̃(x), (3.18)

which ensures equivalence of the approximate variational inference5 in ML and
M̃I . Then by analogy with proposition 3.1, it is easy to see that the lower
bound L̃ on the likelihood in ML is in fact a proper lower bound on the mutual
information in M̃I . Moreover, we can easily find a tractable lower bound on
I(x, y) which is tighter than L̃.

Proposition 3.2. For i.i.d. patterns {x}, maximization of the standard varia-
tional lower bound on the likelihood in the generative model ML corresponds to
maximization of a lower bound on the mutual information in M̃I . Up to irrele-
vant constants, this bound is weaker or as tight as Îq(x, y) = 〈log p(x|y)〉q(y|x)p̃(x),
where q(y|x) is the approximate posterior of the generative model.

Proof. By definition, the exact value of mutual information I(x, y) for model M̃I

is given by
I(x, y) = Hp̃(x) + 〈log p̃(x|y)〉q(y|x)p̃(x), (3.19)

5Since computing the exact posterior p(y|x) in ML will now be intractable, we will need
approximations to perform the inference. The choice of the variational posterior q(y|x) as a
model for the encoder ensures tractability and helps to establish a relationship between varia-
tional likelihood and mutual information maximization under the assumption of equivalence of
approximate inference.
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where p̃(x|y) ∝ p̃(x)q(y|x) is the exact posterior expressed from the encoder model.
Then, by analogy with the proof of proposition 3.1, we get

I(x, y) ≥ Hp̃(x) + 〈log p(x|y)〉q(y|x)p̃(x) − 〈KL(q(y|x)‖p(y))〉p̃(x) ⇒ (3.20)

I(x, y) ≥ Îq(x, y) ≥ Hp̃(x) + L̃, (3.21)

where L̃ is defined as in (3.17), and the tighter lower bound on I(x, y) is defined
as

Îq(x, y)
def
= Hp̃(x) + 〈log p(x|y)〉q(y|x)p̃(x), (3.22)

which is tractable by construction.

Clearly, the relation (3.22) between variational approaches to mutual infor-
mation and likelihood maximization in M̃I and ML is analogous to the similar
relation (3.10) for the exact likelihood computations. Effectively, proposition 3.2
states that standard variational approaches to likelihood maximization may in-
deed be seen as a way to optimize a specific variational lower bound on I(x, y)
in the corresponding encoder model M̃I . Again, a tighter (yet tractable) bound
would be given by Îq(x, y), which is exactly the generic variational lower bound on
the mutual information in M̃I for the specific parameterization of the decoder dis-
tribution. Moreover, from (3.20) it is clear that maximization of the lower bound
Îq(x, y) on the mutual information and the variational Jensen’s bound L̃ on the
likelihood lead to the same fixed points when the Kullback-Leibler divergence in
(3.20) is a constant (also see discussion in Appendix B.2).

It is interesting to note that by optimizing the bound on the likelihood L̃ for
the latent space prior p(y) and substituting the optimal functional parameters
back into (3.20), we may transform (3.20) to

I(x, y) ≥ Hp̃(x) + 〈log p(x|y)〉q(y|x)p̃(x)
︸ ︷︷ ︸

Îq(x,y)

−
〈
KL(q(y|x)‖〈q(y|x)〉p̃(x))

〉

p̃(x)
(3.23)

≥ Hp̃(x) + L̃. (3.24)

(Here the second inequality (3.24) reduces to an identity if and only if the current
settings of p(y) in the generative model ML are indeed L̃-optimal). Note that the
Kullback-Leibler term in (3.23) is generally nonzero. This results in a relaxation
of the variational bound on I(x, y), i.e. apart from simple special cases6, the
bound Hp̃(x) + L̃ will be strictly weaker than Îq(x, y).

Informally, from (3.20) we can see that optimization of the bound on the
likelihood in ML could reduce to optimizing the generic lower bound Îq(x, y) on
the mutual information in M̃I , if the marginal distribution p(y(i)) of each latent
vectors y(i) was an independent free parameter. Indeed, the variational bound on

6It is easy to see that Îq(x, y) = Hp̃(x) + L̃ may be achieved when q(y|x) = q(y), i.e. both
the likelihood and the information-theoretic bound use an extremely weak definition of the
encoding distribution. Similarly, both bounds are identical if M = 1, i.e. there is a singe
pattern to encode. A brief discussion of other special cases when both bounds lead to identical
optima is given in Appendix B.2.
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Figure 3.3: Generative and encoder models for i.i.d. patterns. Left: generative

model ML for M i.i.d. training patterns {x(1), . . . , x(M)} with the corresponding
latent variable representations {y(1), . . . , y(M)}; Right: the corresponding model of
the memoryless channel MI . The shaded nodes indicate the implied conditionings
on the intrinsically deterministic model parameters.

the likelihood (3.17) could in this case be expressed as

L ∝
M∑

i=1

〈log p(x(i)|y)〉q(y|x(i)) −
M∑

i=1

KL(q(y|x(i))‖p(y(i))). (3.25)

If for all training patterns i = 1, . . . ,M we were free to change each latent-space
marginal individually, we could optimally set it to the variational posterior as

p(y(i) = y)
def
= p(y(i) = y|Θ(i)

y ) = q(y|x(i), Ψy|x)
def
= q(y|x(i)), (3.26)

which would lead to L̃ = Îq(x, y) at the optimum of (3.25). It is clear that (3.26)
is exactly the definition of the latent-space marginals p̃(y(i)) in the encoder model
M̃I (see Figure 3.3 (right)). It is also clear that (3.26) does not generally apply
for the generative model ML and i.i.d observations, where

∀Θy. ∀i, j ∈ {1, . . . ,M}. p(y(i) = y|Θy) = p(y(j) = y|Θy) (3.27)

(see Figure 3.3 (left)).
Generally, we can say that learning by optimizing the exact likelihood (or stan-

dard variational lower bounds on the likelihood) in generative models could be
interpreted as optimization of a specific lower bound on the generally intractable
mutual information in the corresponding encoder models (3.2), (3.18). However,
the optimization surfaces and the obtained solutions will generally be different
from those given by the variational approach to information-maximization in the
corresponding models of memoryless channels. This difference in the objectives
is quantified as a summation of generally non-constant KL divergences between
the posteriors p(y|x(i)) and their empirical average 〈p(y|x)〉p̃(x), as expressed from
ML for i.i.d. data. Arguably, one of the principal causes of the difference is the
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Figure 3.4: An autoencoder model for M training patterns {x(1), . . . , x(M)} and their

reconstructions {x̃(1), . . . , x̃(M)}. The shaded nodes indicate the conditionings on the
deterministic model parameters.

identical distribution of the latent vectors in ML, which is implied by the specific
form of the prior on the latent vectors. We may further notice a closer corre-
spondence between optimizing the mutual information in encoder models (Figure
3.3 (right)) and the conditional likelihood training in autoencoders (see Figure
3.4), which are characterized by generally different marginal distributions of the
encodings, and the model specification more similar to the encoder paradigm.
Presuming that our intuition here is correct, we may perceive the existence of
optimization procedures where the conditional training of autoencoders reduces
to the variational information maximization.

3.3 Information Maximization and Maximum Con-

ditional Likelihood

A classic method of obtaining informative lower-dimensional representations of
higher-dimensional source vectors is to consider an autoencoder with the parame-
terized mappings from the source vectors to the codes (x → y), and from the codes
to the reconstructions of the source vectors (y → x̃) (Hinton (1989), Baldi and
Hornik (1989), Bishop (1995)). The goal is to learn parameters of encoder and de-
coder mappings which would lead to accurate reconstructions of the sources from
their encoded representations. Most of the conventional approaches to train-
ing such models (e.g. minimization of the mean squared reconstruction error,
minimization of the cross-entropy for multinomial vectors, etc.) are equivalent to
maximizing the conditional likelihood p({x̃}|{x}) in generalized chains x → y → x̃
under specific parametric constraints on the encoder and decoder distributions.
Several other methods for optimizing parameters of such networks may be shown
to correspond to variational likelihood learning in mixture models (Zemel (1993),
Zemel and Hinton (1994)), while in some other cases the optimized objectives
do not seem to have a clear probabilistic interpretation (Doi and Lewicki, 2004).
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Here we will focus primarily on the discussion of conventional conditional training
of feed-forward models, and the relations which the resulting objective functions
may have to variational bounds on the mutual information.

While it is commonly presumed that the encoding part of the autoencoder is
noiseless (i.e. p(y|x) ∼ δ), probabilistic extensions may easily be considered. By
analogy with the marginal likelihood training of arbitrarily structured graphical
models, a proper probabilistic method of training stochastic autoencoders would
involve integration of the hidden encodings and maximization of the likelihood
with respect to deterministic parameters of the model subject to specific con-
straints. Typically, the goal of learning would be to find the optimal encoder
p(y|x) and decoder p(x̃|y) distributions (which effectively reduces to maximiz-
ing the conditional likelihood). Clearly, this formulation is somewhat similar to
variational approaches to mutual information maximization, where the objective
function is optimized with respect to the encoder and variational decoder. More-
over, as we have mentioned earlier, we may perceive another link between mutual
information and conditional likelihood maximization from Fano’s inequality (3.1),
which relates the mutual information with an upper bound on the probability of
correct reconstructions. Our goal here is to explore these apparent similarities
and establish a possible relation between variational information maximization
and conditional likelihood training in generalized chains independently of specific
parameterizations.

We will begin the discussion by outlining a general relation between con-
ditional likelihood and conditional mutual information maximization in general
feed-forward models x → y → x̃. Clearly, this view extends the reconstruction
paradigm of autoencoders, since for general chains the sources x and the outputs
x̃ may generally lie in different domains. By analogy with the results of section
3.2, we will show that for i.i.d. patterns, the exact conditional likelihood for
the considered chains defines a proper lower bound on the conditional mutual
information in memoryless channels. Effectively, this formulation corresponds to
maximizing the amount of information which the encodings contain about the
outputs for the given set of source patterns I({x̃}, {y}|{x}).

Then we will consider a special case of stochastic autoencoders, where the
empirical distribution is constrained so that p̃(x̃|x) ∼ δ(x − x̃), i.e. the decoded
patterns x̃ are the exact uncorrupted copies of the sources x. For this specific case,
it is easy to establish a simple relation between conditional likelihood training
in stochastic autoencoders and maximization of the mutual information in the
channel model x → y. Specifically, we will show that the exact mutual informa-
tion I(x, y) is a proper lower bound on the probability of correct reconstructions
in stochastic autoencoders where the reconstructing distribution is given by the
exact posterior. Moreover, we will show that if the encoding mappings of such
autoencoders are noiseless, maximum conditional likelihood training is equiva-
lent to maximizing the exact mutual information in the corresponding noiseless
channel.

Finally, we will consider the situation when the conditional likelihood cannot
be computed exactly, and show that the standard variational approaches to max-
imizing the conditional likelihood in stochastic autoencoders reduce to a specific
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instance of the generic IM algorithm.

3.3.1 Variational Information Maximization and Exact Condi-

tional Likelihood Training in Feed-Forward Models

To establish a relationship between conditional likelihood and mutual information
training, we will now consider a simple feed-forward model, which defines the joint
distribution over the latent variables y and outputs x̃ conditionally on the sources
x, i.e.

MC
def
= p(y|x)p(x̃|y). (3.28)

The functional parameters p(y|x) and p(x̃|y) are determined by maximizing the
conditional likelihood

Lx̃|x = log p ({x̃}|{x}) /M = 〈log p(x̃|x)〉p̃(x,x̃), (3.29)

where p̃(x̃, x) is the empirical distribution of the input and output pairs. In the
general formulation, we will not impose specific constraints on the exact form of
the empirical distribution, so the ranges Rx, Rx̃ of the source and output variables
x, x̃ may in general be different. Once the model is trained, the states of the latent
variables y corresponding to any given source-output pair are inferred from the
exact posterior p(y|x, x̃) ∝ p(x̃|y)p(y|x).

We will now define a recognition model

MIC
def
= p̃(x, x̃)p(y|x, x̃), (3.30)

where p(y|x, x̃) is the exact posterior of the feed-forward model MC . Clearly, the
encoder model’s specification (3.30) leads to equivalence of the exact inference in
MC and MIC for all the visible source-output pairs {x, x̃}. While this formulation
might not have an easily interpretable link to communication theory7, it does have
a direct relation to conditional likelihood training in feed-forward models, which
generalize the reconstruction paradigm of stochastic autoencoders. Indeed, it is
easy to show that the exact conditional likelihood in MC is in fact a lower bound
on the conditional mutual information I(x̃, y|x) in MIC .

Proposition 3.3. For i.i.d. patterns {x, x̃}, conditional likelihood learning in the
feed-forward model MC corresponds to maximization of a lower bound on the
conditional mutual information I(x̃, y|x) in MIC. Up to irrelevant constants, this

bound is weaker or as tight as ÎC(x̃, y|x)
def
= 〈log p(x̃|x, y)〉p(y|x,x̃)p̃(x,x̃).

We prove and discuss this result in Appendix B.1. Note, however, that in the
special case when the chain model MC and the empirical distribution p̃(x, x̃)
define an autoencoder, the bound ÎC(x̃, y|x) gives a model-specific upper bound
on the probability of correct reconstructions

Lx̃|x ≤ ÎC(x̃, y|x) + Hp̃(x̃|x) (3.31)

7One may potentially view MIC as a model of the reverse transmission path for half-duplex
channels (Glover and Grant (2003)), where the received vectors are sent back across a noisy
channel whose specific properties may in general be affected by the original sources.
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(cf Fano’s inequality (3.1)).
We will now use the general result of proposition 3.3 to show that for several

specific autoencoders, the conditional likelihood training in MC has a strong
correspondence to mutual information maximization in unconditional encoder
models MI = p̃(x)p(y|x), which has a stronger relation to the variational IM
formulation (see Section 2.1.2).

3.3.2 Variational Information Maximization and Exact Train-

ing of Autoencoders

If Rx ≡ Rx̃ and the outputs {x̃} are the exact uncorrupted copies of the sources
{x} for all the training patterns (x(i), x̃(i)) ∈ XC , i ∈ {1, . . . ,M}, then the feed-
forward model MC reduces to a stochastic autoencoder. We will now outline a
few simple relations between mutual information maximization in simple channel
models MI and conditional likelihood training in autoencoders8 MC for several
specific constraints on the encoder and decoder distributions. However, first we
will prove a simple lemma which will be extensively used throughout the discus-
sions in the rest of this chapter. Effectively, it will help us to reduce computations
of average quantities in chains x → y → x̃ to computing specific integrals in the
encoder models x → y.

Lemma 3.1. Let the outputs x̃ be the exact copies of the sources x, i.e. Rx ≡ Rx̃

and p̃(x̃|x) ∼ δ(x− x̃). Additionally, let p̃(x) =
∑M

i=1 δ(x−x(i))/M be the empirical
distribution of the sources, and qx|y(x = s|y) = qx̃|y(x̃ = s|y) for all patterns s ∈ Rx

and encodings y ∈ Ry. Then 〈F{qx̃|y(x̃|y)}〉p(y|x)p̃(x,x̃) = 〈F{qx|y(x|y)}〉p(y|x)p̃(x),
where F is an arbitrary y-integrable functional of the conditionals q(x̃|y) and
q(x|y).

Proof. By the direct substitution, we obtain

〈F{qx̃|y(x̃|y)}〉p(y|x)p̃(x,x̃) =
1

M

M∑

i=1

〈F{qx̃|y(x̃|y)}〉p(y|x(i))p̃(x̃|x(i))

=
1

M

M∑

i=1

∫

y

p(y|x(i))

∫

x̃

F{qx̃|y(x̃|y)}δ(x̃ − x(i)) dx̃ dy

=
1

M

M∑

i=1

∫

y

p(y|x(i))F{qx|y(x
(i)|y)} dy (3.32)

= 〈F{qx|y(x|y)}〉p(y|x)p̃(x), (3.33)

where the identity (3.32) follows from the condition that qx|y(x = s|y) = qx̃|y(x̃ =
s|y).∀s ∈ Rx,∀y ∈ Ry.

8As one-layer autoencoders will have the same graphical structure and parameterization as
the general chain x → y → x̃, we will refer to them as MC (see expression (3.28)). The only
things different from the more general feed-forward models are the constraints on the empirical
distribution p̃(x, x̃) and the ranges of the source-output variables, which do not form a part of
the graphical specification.
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x y x̃

x y

p(y|x) ∼ δ

Ĩ(x, y) = Lx̃|x + Hp̃(x) for q(x = s|y) = p(x̃ = s|y)

MC :

MI :

p(y|x) ∼ δ p(x̃|y)

q(x|y)

Figure 3.5: Variational information maximization and noiseless autoencoders. Maxi-
mization of the conditional likelihood in noiseless autoencoders MC reduces to maxi-
mization of the variational lower bound Ĩ(x, y) in the corresponding noiseless channels
MI , where the variational decoder is given by q(x = s|y) = p(x̃ = s|y). Thick ar-
rows show deterministic mappings; the dashed arrow corresponds to the variational
distribution.

Specifically, for F(q) ≡ log(q), we get

〈log p(x̃|y)〉p(y|x)p̃(x,x̃) = 〈log q(x|y)〉p(y|x)p̃(x), (3.34)

where we have defined q(x = s|y)
def
= p(x̃ = s|y) for all patterns s ∈ Rx ≡ Rx̃,

y ∈ Ry. We will now use the results (3.33) and (3.34) in order to relate the
information-theoretic learning in channel models and the conditional learning in
autoencoders.

3.3.2.1 Noiseless Autoencoders

In conventional approaches to autoencoder training, it is typically presumed that
the encoding part of the autoencoder is deterministic (Hinton (1989), Baldi and
Hornik (1989), Bishop (1995)), i.e.

p
(
y|x(i)

)
∼ δ

(
y − f(x(i))

)
= δ

(
y − y(i)

)
, (3.35)

where y(i) def
= f(x(i)). With a slight abuse of terminology, we will refer to au-

toencoders satisfying (3.35) as being noiseless, rather than stochastic, in order
to stress the determinism of the encoding mapping. It is easy to see that for
the specific case (3.35), optimization of the exact conditional likelihood Lx̃|x in
the autoencoder MC is equivalent to maximizing the generic lower bound on the
mutual information in the corresponding noiseless channel MI . The model of the
noiseless channel is defined similarly to expression (3.2), i.e. MI = p̃(x)p(y|x).
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Proposition 3.4. For i.i.d. patterns {x}, exact conditional likelihood learning
in noiseless autoencoders MC is equivalent to maximizing the generic lower
bound on mutual information Ĩ(x, y) = 〈log q(x|y)〉p(y|x)p̃(x) + Hp̃(x) in noiseless
channels MI , where the variational decoder q(x|y) is constrained to be equivalent
to the decoding distribution of the autoencoder.

Proof. Let x̃ denote the reconstructed variables of the autoencoder model, so that
Rx = Rx̃ and p̃(x, x̃) = p̃(x)δ(x̃− x). From expressions (3.28) and (3.35) it is clear
that for noiseless autoencoders the exact posterior of the conditional model MC

is given by

p(y|x(i), x̃) =
p(y|x(i))p(x̃|y)

∫

y
p(y|x(i))p(x̃|y) dy

=
δ(y − y(i))p(x̃|y(i))

p(x̃|y(i))
, (3.36)

where y(i) is defined as in expression (3.35). Then we immediately obtain

p(y|x(i), x̃) = δ(y − y(i)) = p(y|x(i)), (3.37)

i.e. for deterministic encoders, the exact posterior in MC is conditionally inde-
pendent of the source reconstructions. By substituting (3.37) into the general
expression (B.3) of the conditional likelihood of feed-forward models (see propo-
sition 3.3), we obtain

Lx̃|x = 〈log p(x̃|x, y)〉p(y|x,x̃)p̃(x,x̃) − 〈KL(p(y|x, x̃)‖p(y|x))〉p̃(x,x̃)

= 〈log p(x̃|x, y)〉p(y|x,x̃)p̃(x,x̃) = 〈log p(x̃|y)〉p(y|x)p̃(x,x̃), (3.38)

as the Kullback Leibler term cancels for all training patterns x(i) ∼ p̃(x). Note
that in the last identity in (3.38) we have used the fact that p(y|x, x̃) = p(y|x)
as the consequence of the deterministic assumption (3.37), and p(x̃|x, y) = p(x̃|y)
from the chain structure of the model MC (see Appendix C.3, proposition C.1).

Let us now define the conditional distribution q(x|y), which is constrained to
be equivalent to the decoding mapping of the autoencoder, i.e. qx|y(x = s|y) =
px̃|y(x̃ = s|y) for all s ∈ Rx ≡ Rx̃, y ∈ Ry. Then from lemma 3.1 and (3.34), the
exact conditional likelihood Lx̃|x in the considered noiseless autoencoders reduces
to

Lx̃|x = 〈log p(x̃|y)〉p(y|x)p̃(x,x̃) = 〈log q(x|y)〉p(y|x)p̃(x), (3.39)

which is effectively the varying part of the generic variational lower bound (2.2)
on the mutual information I(x, y) for the encoder model MI . Again, here p̃(x) is
the empirical distribution of the sources, and p(y|x) is the deterministic encoder
given by (3.37). Therefore, from (2.2) and (3.39) we get

I(x, y) ≥ Ĩ(x, y) = Lx̃|x + Hp̃(x). (3.40)

Thus, optimization of the exact conditional likelihood Lx̃|x in conventional
noiseless autoencoders may be seen as a special case of the variational IM al-
gorithm for the corresponding noiseless channel, where the variational decoder
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is identical to the autoencoder’s decoding distribution (see Figure 3.5). From
proposition 3.4 we can see that there is only a constant gap between the surfaces
defined by Ĩ(x, y) and the conditional likelihood Lx̃|x, which for the considered
case does not affect the extrema. (Note that this contrasts with the surfaces
defined by log-likelihoods L of generative models ML, see (3.8)). Moreover, it is
easy to see that the bound on I(x, y) is saturated if the decoding distribution of
the autoencoder is constrained to be identical to the exact posterior of MI , i.e.

px̃|y(x̃ = s|y) ∝ py|x(y|x = s)p̃(x = s). ∀s ∈ Rx ≡ Rx̃, y ∈ Ry. (3.41)

Clearly, for this specific case, minimization of the reconstruction error in noise-
less autoencoders and maximization of the exact mutual information in noiseless
channels are formally equivalent, if the decoding distribution is the exact poste-
rior.

3.3.2.2 Stochastic Autoencoders with Bayesian Decoders

We have shown that the conventional conditional likelihood training of noiseless
autoencoders MC may indeed be viewed as a special case of variational informa-
tion maximization in noiseless channels MI , where the variational posterior is
given by the MC ’s decoding distribution. Additionally, for the special case when
the decoder is given by the exact Bayesian posterior, the conditional training of
noiseless autoencoders is equivalent to maximizing the exact mutual information
I(x, y) under the deterministic encoding constraint. Here we relax the noiseless
assumption and briefly discuss a general link between I(x, y) and Lx̃|x maximiza-
tion. Specifically, we will motivate maximization of the mutual information as an
approximate method for reducing the reconstruction error.

Proposition 3.5. If the decoding distribution of an autoencoder model MC =
px̃|y(x̃|y)py|x(y|x) is given by the exact posterior px̃|y(x̃|y) ∝ p̃(x)py|x(y|x), then for
i.i.d. patterns the conditional likelihood is lower-bounded by the exact mutual
information of the corresponding model of a stochastic memoryless channel MI =
p̃(x)py|x(y|x) (up to irrelevant constants).

Proof. The proof follows from Bayes rule and Jensen’s inequality (Jensen (1906)
and e.g. Korn and Korn (1968)). By definition, we obtain

Lx̃|x = 〈log〈px̃|y(x̃|y)〉py|x(y|x)〉p̃(x̃,x) =
1

M

M∑

i=1

log

∫

y

px̃|y(x̃ = s(i)|y)py|x(y|x = s(i)) dy

=
1

M

M∑

i=1

log p̃(x = s(i))

[
∫

y

p2
y|x(y|x = s(i))

p(y)

]

dy,

(3.42)

where p(y) = 〈py|x(y|x)〉p̃(x). Then from Jensen’s inequality we may transform
(3.42) to

Lx̃|x ≥
1

M

M∑

i=1

〈
log py|x(y|x = s(i)) + log p̃(x = s(i)) − log p(y)

〉

p(y|x=s(i))

=
〈
log py|x(y|x)/p(y)

〉

py|x(y|x)p̃(x)
+ 〈log p̃(x)〉p̃(x). (3.43)
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From the definition of the mutual information in the encoder model MI , we easily
get the lower bound on the conditional likelihood

Lx̃|x ≥ I(x, y) − Hp̃(x). (3.44)

Unlike propositions 3.3 and 3.4, which effectively define information-theoretic
upper bounds on the conditional likelihood in a way which is vaguely reminis-
cent of Fano’s inequality (see expression (3.1) and discussion in Appendix B.1),
proposition 3.5 provides a general motivation for maximizing the mutual infor-
mation as a method of decreasing the reconstruction error. Indeed, inequality
(3.44) may be viewed as a proper lower bound on the average probability of the
correct reconstructions in stochastic autoencoders with the specific Bayesian set-
ting of the decoding distribution. As the exact conditional likelihood (3.42) will
typically be intractable due to a generally non-trivial form of the log posterior,
one could naively hope to simplify the process of maximizing Lx̃|x by considering
optimization of its proper information-theoretic lower bound I(x, y). However, as
we have discussed in previous chapters, in many cases of interest the bound (3.44)
would involve computing intractable entropic terms. To handle the intractability
we may consider optimizing tractable lower bounds on the mutual information,
such as the generic bound (2.2), which would correspond to further relaxations
of (3.44) and still define proper bounds on Lx̃|x.

Of course, in principle other kinds of lower bounds on the conditional like-
lihood may be considered. It is interesting and potentially enlightening to see
how these objectives and the solutions obtained by the conditional training in
completely general, intractable autoencoders could relate to mutual information
maximization in stochastic channels. We will now show the fundamental similar-
ity between both approaches for the general variational reformulations.

3.3.3 Variational Information Maximization and Variational Train-

ing of Autoencoders

In proposition 3.3 we have shown that for the general case of stochastic autoen-
coders, the exact conditional likelihood Lx̃|x defines a relaxation of the variational
lower bound on the conditional mutual information I(x̃, y|x). We have also shown
that conventional approaches to training deterministic autoencoders may indeed
be viewed as special cases of variational mutual information maximization in
noiseless communication channels. While these results may be useful for under-
standing a general relation between the exact conditional likelihood and mutual
information maximization, they are limited to the cases when the computations
are tractable. Of course, in general it may be intractable to optimize the exact
conditional likelihood Lx̃|x = 〈log〈p(x̃|y)〉p(y|x)〉p̃(x,x̃), and one needs to consider ap-
proximations. Here we handle the intractability of integrating over the hidden
states by maximizing the variational Jensen’s bound on the objective Lx̃|x, and
show that variational approaches to the conditional likelihood training in stochas-
tic autoencoders indeed reduce to optimizing the generic lower bound on I(x, y)
in stochastic channels.
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Clearly, by analogy with the standard variational approaches of training gen-
erative models (see expression (3.17)), we can define the variational lower bound
on the conditional likelihood Lx̃|x in MC as

Lx̃|x ≥ L̃x̃|x = 〈log p(x̃, y|x)〉q(y|x,x̃)p̃(x,x̃)
︸ ︷︷ ︸

Average energy

−〈log q(y|x, x̃)〉q(y|x,x̃)p̃(x,x̃)
︸ ︷︷ ︸

Entropy

. (3.45)

We can now expand the energy term to get

L̃x̃|x = 〈log p(x̃|x, y)〉q(y|x,x̃)p̃(x,x̃) − 〈KL(q(y|x, x̃)‖p(y|x))〉p̃(x,x̃) , (3.46)

where q(y|x, x̃) is an arbitrary variational posterior, which we constrain to ensure
the tractability of computing (3.46). Clearly, (3.46) is saturated for q(y|x, x̃) ≡
p(y|x, x̃). The standard variational EM algorithm optimizes the objective (3.46)
with respect to the encoder p(y|x), decoder p(x̃|x, y) = p(x̃|y), and the variational
distribution q(y|x, x̃), subject to the imposed constraints. Our goal here is to com-
pare the fixed points of the variational EM algorithm for stochastic autoencoders
with the fixed points of the IM algorithm for the corresponding encoder model

M̃I = qy|x(y|x)p̃(x), (3.47)

where
qy|x(y|x = s)

def
= q(y|x = s, x̃ = s) (3.48)

for all s ∈ Rx = Rx̃. Again, during inference in MC we approximate the exact
posterior p(y|x, x̃) by the variational distribution q(y|x, x̃). Note that since the
channel encoder qy|x(y|x) corresponds to the specific instance of the tractable
variational posterior q(y|x, x̃), it also lies in a tractable family.

Proposition 3.6. For i.i.d. patterns {x, x̃}, optimization of the standard vari-
ational Jensen’s bound on the conditional likelihood L̃x̃|x in stochastic autoen-
coders MC = p(y|x)p(x̃|y) reduces to maximization of a specific variational lower
bound on the mutual information I(x̃, y) in the stochastic memoryless channel
M̃I = qy|x(y|x)p̃(x).

Proof. We will prove the proposition by expressing the fixed point updates of
the variational EM on the bound L̃x̃|x and comparing them with the variational
information maximizing algorithm for the encoder model (3.47).

The autoencoder formulation of the conditional training implies the constraint
on the empirical distribution, namely p̃(x̃|x) ∼ δ(x̃−x). This transforms the bound
on the conditional likelihood (3.46) to

L̃x̃|x =
1

M

M∑

m=1

〈log px̃|y(x̃ = s(m)|y)〉q(y|x=s(m),x̃=s(m))

−
1

M

M∑

m=1

KL
(
q(y|x = s(m), x̃ = s(m))‖py|x(y|x = s(m))

)
, (3.49)

where s(m) ∈ X is the mth training pattern. Note that due to the specific sym-
metric constraint on p̃(x, x̃), the variational posteriors q(y|x = s(m), x̃ 6= s(m)) do
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x y x̃MC :

py|x(y|x) px̃|y(x̃|y)

q(y|x, x̃)

x y

qy|x(y|x)

M̃I :

px̃|y(x̃|y)

Ĩ(x, y) = L̃x̃|x + Hp̃(x) for qy|x(y|x) = q(y|x = x̃)

Figure 3.6: Variational information maximization and stochastic autoencoders. Max-

imization of the standard lower bound on the conditional likelihood L̃x̃|x in MC

reduces to maximization of the generic lower bound Ĩ(x, y) in the corresponding en-

coder models M̃I
def
= qy|x(y|x)p̃(x) if qy|x=s(y|x) = q(y|x = s, x̃ = s). Here q(y|x, x̃) is

the variational posterior of L̃x̃|x. Dashed arrows show the graphical structure of the
variational distributions.

not affect the bound L̃x̃|x; in other words, for the optimization surface (3.49), the
cardinality of p(y|x) is greater or equal to the effective cardinality of q(y|x, x̃).

At the first step of the variational EM algorithm we will optimize the bound on
the conditional likelihood L̃x̃|x with respect to the encoder distribution py|x(y|x).
From (3.49), it is easy to see that the optimal encoder must satisfy

∀s(m) ∈ X , py|x(y|x = s(m)) = q(y|x = s(m), x̃ = s(m)) ≡ qy|x(y|x = s(m)). (3.50)

Clearly, (3.50) is achievable as long as the family Fqy|x
of the variational distribu-

tions q(y|x = x̃) is a subset of the family Fpy|x
of the exact conditionals py|x(y|x),

which will typically be the case for the simplifying variational approximations.
Substituting the optimal encoder (3.50) into the objective (3.49), we obtain

L̃(1)
x̃|x =

1

M

M∑

m=1

〈log px̃|y(x̃ = s(m)|y)〉q(y|x=s(m),x̃=s(m)) = 〈log px̃|y(x̃|y)〉q(y|x,x̃)p̃(x,x̃),(3.51)

which is formally just the non-constant part of the bound on the conditional
mutual information I(y, x̃|x), where the conditional encoder is given by q(y|x, x̃)
(see proposition 3.3). The objective (3.51) will now need to be optimized for
q(y|x, x̃) and px̃|y(x̃|y), subject to the specific constraints on the decoder and the
variational distribution. Without loss of generality, we may assume that the
optimum for q(y|x = x̃) is achieved at q(y|x = s, x̃ = s) = r(y|x = s) ∈ Fqy|x

, where
r(y|x = s) is some distribution in the family of the variational posteriors, and
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s ∈ Rx. This transforms (3.51) into

L̃(2)
x̃|x = 〈log px̃|y(x̃|y)〉r(y|x)p̃(x,x̃) = 〈log px̃|y(x|y)〉r(y|x)p̃(x), (3.52)

where we have applied the results of lemma 3.1. Finally, at the last step of the
variational EM we optimize the objective (3.52) for px̃|y, assuming that r(y|x) is
fixed.

It is already easy to see that the iterative optimization of L̃x̃|x is strongly
related to maximization of the generic lower bound on the mutual information
(2.2). Indeed, we may explicitly write the fixed point solutions for the tth iteration
of the algorithm9 as

p
(t−1)
y|x (y|x = s(m)) = q(t−1)(y|x = s(m), x̃ = s(m)), (3.53)

q(t)(y|x = s(m), x̃ = s(m)) = r(t)(y|x = s(m))
def
= arg max

q
〈log p

(t−1)
x̃|y (x = s(m)|y)〉q(y|x=s(m),x̃=s(m)),

(3.54)

p
(t)
x̃|y(x̃ = s(m)|y) = arg max

px̃|y

〈log px̃|y(x = s(m)|y)〉r(t)(y|x=s(m)), (3.55)

where we implied the relevant constraints on the optimized functional parameters.
We may further combine (3.53) and (3.54) to get the optimal encoder for the next
iteration

p
(t)
y|x(y|x = s(m)) = q(t)(y|x = s(m), x̃ = s(m)) ∈ Fqy|x

⊆ Fpy|x

= arg max
qy|x

〈log p
(t−1)
x̃|y (x = s(m)|y)〉qy|x(y|x=s(m)). (3.56)

Clearly, the fixed points (3.55) and (3.56) for the autoencoder’s decoding and
encoding mappings are equivalent to the ones obtained by the iterative maxi-
mization of

Ĩ(x, y) = 〈log px̃|y(x|y)〉qy|x(y|x)p̃(x) + Hp̃(x), (3.57)

where qy|x(y|x) ≡ q(y|x = x̃) ∈ Fqy|x
for all x, x̃ ∈ Rx. Note that Ĩ(x, y) is the

generic lower bound on the mutual information in the stochastic channel M̃I ,
with the variational decoder given by px̃|y(x̃|y). The iterative optimization of
(3.57) for px̃|y and qy|x defines the simplest form of the IM algorithm (see Section
2.1.2). Therefore, the variational conditional likelihood training in autoencoders
may be viewed as a special case of the variational IM algorithm for the stochastic

channel M̃I
def
= p̃(x)qy|x(y|x) (see Figure 3.6).

It is intuitive that the tightness of L̃x̃|x (and the equivalent objective (3.57)) will
strongly depend on the constraints on the family of the variational distributions
Fqy|x

⊆ Fpy|x
. Importantly, we may note that in the case when the computations

of 〈log px̃|y(x|y)〉py|x(y|x) are tractable, we may be able to choose the family of the

9For the reasons of notational clarity, we will also express the optimal encoder p
(t−1)
y|x (y|x)

for the previous iteration of the algorithm.
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variational distributions to satisfy Fqy|x
= Fpy|x

. This more general choice of the
variational distributions transforms (3.57) into the equivalent objective

Ĩ(x, y) = 〈log px̃|y(x|y)〉py|x(y|x)p̃(x) + Hp̃(x) (3.58)

with py|x(y|x) ∈ Fqy|x
= Fpy|x

. From (2.2) it is clear that (3.58) is in fact the

generic lower bound10 on I(x, y) in the channel model MI = p̃(x)py|x(y|x), which
is effectively the encoding part of the autoencoder MC . Thus, we may state
the equivalence of the variational conditional likelihood training of stochastic au-
toencoders to the simplest form of the variational information maximization in
the corresponding stochastic channels (MI or M̃I , depending on the tractability
of computing (3.58)). This agrees with the intuitive argument of Section 3.2.2,
where we hypothesized that our generic approximate approach to information
maximization should be relatable to learning in stochastic autoencoders.

3.4 Summary

Maximum likelihood learning in generative models ML and mutual information
maximization in encoder models of communication channels MI may be viewed
as alternative frameworks for finding (unknown) informative representations {y}
of the source patterns {x}. These methods are fundamentally different in several
respects. One of the most important differences is parameterization of the cor-
responding models. Generative models are parameterized by specifying the data
generating process and the prior on the latent variable representations. While this
parameterization may often be useful and relevant (for example, when there are
reasons to believe that the higher-dimensional observations {x} are indeed gener-
ated from lower-dimensional latent variable representations by applying specific
noisy transformations), the generative framework is arguably more difficult to
apply when there is a need to impose specific constraints on the posteriors p(y|x).
Indeed, as the posterior p(y|x) of a generative model will typically be a highly
non-linear function of ML’s parameters, explicit constraints on its moments will
typically be difficult to impose. Clearly, this contrasts with the encoder models
MI , where the channel encoder distribution p(y|x) is a part of the model’s spec-
ification. In many cases, the choice of the encoder in MI may be intuitive (for
example, for clustering applications); alternatively, in some cases it may be deter-
mined by the environment (for example, for a known type of a neuro-physiological
or communication channel).

The second conceptual difference of the likelihood and information maximiza-
tion methods follows from the definitions of optimality. As the objective of the
generative learning in ML is quantified as the cross entropy between the model
and the empirical distribution (for i.i.d. patterns), a completely unconstrained

10Moreover, it is easy to see that up to irrelevant constants, expression (3.58) is just the
Jensen’s bound on the conditional likelihood Lx̃|x. Since for Fqy|x

⊆ Fpy|x
the bound (3.57) will

typically be weaker than (3.58), there are no apparent conceptual gains of using the variational
extensions of the Jensen’s bound on the conditional likelihood for stochastic autoencoders.
However, if the optimization is performed numerically, the specifics of the learning may be
different.
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L-optimal model would mimic the set of the observations. Since this global op-
timum is clearly of little interest for any practical inference problem, there is a
need for an inductive bias, i.e. constraints on the model distribution p(x) which
would hopefully be useful for producing sensible generalizations. Latent variable
representations of the observed data, as well as parametric or structured specifica-
tions of the models, are useful ways of introducing meaningful constraints, though
the resulting models are doomed to produce weaker likelihoods than what one
would get by using the empirical distribution p̃(x) as a model. Divergences and
known numerical instabilities and degeneracies of likelihood solutions in certain
under-constrained models may themselves be intrinsic artifacts of this definition
of optimality. Usually, one may introduce additional constraints by applying
Bayesian approaches, which optimize type-2 (marginal) likelihoods.

On the other hand, in the information-maximizing framework, optimal map-
pings to the hidden space are obtained by maximizing the certainty of reconstruct-
ing the source vectors from their latent variable representations. In this case,
non-observability of some of the variables is not an inductive modeling assump-
tion; it is a consequence of the channel definition where the information-theoretic
learning can make sense. (Indeed, in the complete data case, i.e. when both the
sources and the codes are visible, the reduction of uncertainty is specified by the
empirical distribution). In general, optimization of mutual information tends to
lead to other forms of degeneracies. Indeed, it is intuitive that unconstrained
encoding distributions of encoder models will tend to be noiseless, and will tend
to produce maximally spread-out representations in the code space. However,
in many practical situations, the noise of the encoder p(y|x) is unavoidable and
intrinsic to the environment, which in practice may often simplify model specifi-
cations.

Our purpose here was to try to understand possible relations between these
approaches, with the specific focus on our variational method for information
maximization. We explored the general relation of the generic IM algorithm
to maximum likelihood learning in generative models and conditional likelihood
learning in stochastic chains. In contrast to much of the previous work which re-
lates the likelihood and the mutual information approaches for relatively simple
special cases (e.g. Oja (1989), Pearlmutter and Parra (1996), Cardoso (1997),
MacKay (1999b)), we tried to relate the methods for the general variational
settings independently of the specific model parameterizations. Specifically, we
showed that the likelihood of a generative model in ML may be viewed as a
lower bound on the mutual information in the corresponding model of the noisy
channel MI , where the encoding distribution is the exact posterior of the gener-
ative model. Moreover, specific tractable lower bounds Î(x, y) optimized by the
information-maximizing algorithm are formally tighter than the corresponding
likelihoods in ML. The generally non-constant gap between L and Î(x, y) sug-
gests the fundamental differences between the induced optimization surfaces and
the solutions obtained by both approaches. A practical side-effect of this study
is an information-theoretic objective for training generative models (which we
discuss further in Section 5.2.1).
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We also demonstrated a close relation between optimization of the simple vari-
ational bound on mutual information (Section 2.1.1) and conditional likelihood
training in stochastic autoencoders. Specifically, we showed that the conventional
approaches to maximizing the exact conditional likelihood in noiseless autoen-
coders x → y → x̃ may be viewed as special instances of the generic IM algorithm
for the corresponding noiseless channels x → y. Optimization of the conditional
log-likelihood for stochastic autoencoders MC is a more difficult computational
task, since marginalization of the hidden codes may potentially be intractable.
Arguably, one of the most straight-forward and rigorous approaches for training
such models is by maximizing the variational Jensen’s bound on the conditional
likelihood, e.g. by applying the variational EM algorithm. Interestingly, we can
show that this procedure for training stochastic autoencoders reduces to the sim-
plest form of the variational IM for a specific noisy channel. Specifically, this
happens when the IM is applied to maximizing the generic bound on I(x, y), with
the variational decoder defined by the decoding mapping of the conditionally
trained stochastic autoencoder MC , and the encoding distribution defined by
MC ’s variational posterior. Thus, the common methods for training the condi-
tional models may in fact be viewed as special cases of the simple variational IM
framework (note that optimization of richer bounds on mutual information may
potentially be considered (Section 2.3)). Finally, a curious side-product of our
exploration of the general properties of the IM algorithm is a tractable model-
specific upper bound on the conditional likelihood, which does not ignore the
information about the reconstructing distributions (cf Fano’s inequality).
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Chapter 4

Variational Information

Maximization for Linear

Dimensionality Reduction

In Chapter 2 and Chapter 3 we described the variational approach to information
maximization and discussed how it relates to other methods of training proba-
bilistic graphical models. Similarly to other variational methods, the principal
idea was to transform the computationally intractable problem of maximizing the
exact mutual information to optimizing tractable bounds on the objective. Our
specific focus in this chapter is on applying the generic and the auxiliary varia-
tional bounds on mutual information to extracting informative lower-dimensional
projections {y} of higher-dimensional data {x}. In order to get an insight into
analytical properties of the IM, we will discuss the case when the projections are
stochastic, with the encoding distribution p(y|x) being an isotropic linear Gaus-
sian1. This case may be formulated from the communication-theoretic viewpoint,
where the goal would be to find the compressed representations {t} of the data
{x}, for the subsequent transmission of these representations over a non-zero noise
Gaussian channel. In this formulation, the goal would be to learn the projections
x 7→ t in such a way that maximizes the amount of information which the received
patterns {y} contain about the original sources {x}. Obviously, the problem re-
duces to maximizing mutual information for an isotropic linear Gaussian channel
and a generally non-Gaussian distribution of the source patterns.

We will start the discussion by considering optimization of Linsker’s as-if
Gaussian objective (Linsker (1992)), which corresponds to a specific form of our
variational formulation for the case of a linear Gaussian variational decoder (see
Chapter 2). We show that for the considered channel, optimization of Linsker’s
as-if Gaussian objective criterion cannot improve on PCA projections. Then we
show that by considering a richer family of the auxiliary variational bounds (see
Section 2.3), we may significantly improve on achievable lower bounds on mutual

1Note that despite the apparent similarity to linear autoencoders (Baldi and Hornik (1989),
Oja (1989), Roweis and Ghahramani (1999)), our formulation is significantly more general in
several respects. Specifically, in our case the encoder p(y|x) is constrained to be an isotropic
linear Gaussian (rather than a noiseless linear projection), and the variational decoder q(x|y) is
an arbitrary distribution in a tractable family (rather than an isotropic linear Gaussian).
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information (under the identical encoding constraints). This result is encourag-
ing, as it suggests a simple way to produce tighter lower bounds on the mutual
information (compared with PCA) without altering the channel specification or
increasing the length of the communicated codewords.

Finally, we discuss a simple and practical reformulation of the dimensionality
reduction problem, and show that by storing an additional auxiliary variable z
(given by the generalized linear projection to the auxiliary space), we may facili-
tate reconstructions of the sources from noisy lower-dimensional representations
without making a recourse to the stored dataset. Effectively, for this case the
objective to optimize would be given by I(x, {y, z}), which results in a simplifica-
tion of the auxiliary variational bound on I(x, y). Strictly speaking, the resulting
reformulation of the optimization problem does not have a direct mapping to a
data transmission problem in a simple Gaussian channel; however, it does give
rise to an efficient compression and decompression mechanism. Indeed, we show
that by a moderate increase in the size of the compressed representations, we
may significantly improve on reconstructions from simple constrained encodings.

4.1 Introduction

One of the principal goals of dimensionality reduction is to produce a lower-
dimensional representation y of a high-dimensional source vector x, so that useful
information which the codes y contain about the sources x is maximally preserved.
If it is not known a priori which coordinates of x may be relevant for a specific
task, it is sensible to maximize the amount of information which y contains about
all the coordinates, for all possible source vectors. As discussed in Chapter 2, the
fundamental measure of informativeness in this context is the mutual information

I(x, y) ≡ H(x) − H(x|y),

which quantifies the decrease of uncertainty in the pattern x due to the knowledge
of y. Again, H(x) ≡ −〈log p(x)〉p(x) and H(x|y) ≡ −〈log p(x|y)〉p(x,y) are marginal
and conditional entropies respectively, and the angled brackets represent the av-
erages.

A principal motivation for applying information theoretic techniques for learn-
ing informative lower-dimensional representations is the general intuition that
the lower dimensional codes should preserve useful information about the higher-
dimensional data. Moreover, the information maximizing framework of encoder
models is particularly convenient for addressing the problem of constrained dimen-
sionality reduction. To demonstrate this, suppose that we are interested in learn-
ing an optimal undercomplete orthonormal projection from the data in the pres-
ence of irreducible Gaussian noise (the stochastic subspace selection view). As dis-
cussed in Section 3.4, it would generally be difficult to impose specific constraints
on the posterior p(y|x) in the usual generative formulation. For example, if the
considered generative model is a factor analyzer p(y)p(x|y) with p(y) ∼ N (0, sI),
p(x|y) ∼ N (Wy,Ψ), and Ψ = {ψijδij} 6= cI, the orthonormal constraints on

A : x → 〈y|x〉 would imply orthonormality of A
def
= (sI + WTΨ−1W)−1WTΨ−1
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(e.g. von Mises (1964), Bartholomew (1987)). Clearly, by explicitly enforcing
(e.g. Arfken (1985), Riley et al. (2002)) the orthonormality constraint, we may
significantly complicate the resulting optimization surface. On the other hand,
a natural way to address the problem of constrained dimensionality reduction
is by considering the information-maximizing paradigm for an encoder model
p̃(x)p(y|x). In this case we could easily impose the orthonormality constraints
(or in fact any other requirements the noisy projections x → y need to satisfy)
by explicitly parameterizing the stochastic mapping p(y|x). For example, for this
specific case we could set p(y|x) ∼ N (Wx,Σy|x), where WWT = I|y|. Effectively,
this parameterization would be analogous to specifying the conditionals of the
discriminative models; however, in contrast to discriminative models which pre-
sume observability of the outputs, the lower-dimensional vectors {y} will in our
case be hidden. Our focus in this chapter is on applying the variational informa-
tion maximizing framework to dimensionality reduction, with specific focus on
the linear case.

4.1.1 Optimization of Linsker’s Criterion

The principled information theoretic approach to dimensionality reduction would
maximize the exact mutual information I(x, y) with respect to parameters of the
encoder p(y|x). Despite the fact that the dimensionality of the reduced space |y|
will be lower than the dimensionality of the original space, the exact evaluation of
I(x, y) will generally be computationally intractable if |y| < |x| is still large. As we
mentioned in Section 1.4, the key difficulty lies in the computation of the entropic
term H(x|y), which is tractable only in a few special cases. A computationally
tractable alternative to maximizing I(x, y) is the IM applied to maximizing proper
lower bounds on the mutual information.

We will start the discussion by considering optimization of the simple generic
lower bound on the mutual information

I(x, y) ≥ Ĩ(x, y)
def
= H(x) + 〈log q(x|y)〉p(y|x)p̃(x), (4.1)

where p̃(x) is the empirical distribution, and the variational approximation q(x|y)
of the exact posterior p(x|y) is given by a linear Gaussian q(x|y) ∼ N (Uy,Σ). As
we showed in Section 1.4, optimization of the bound (2.2) for this specific choice
of the variational decoder reduces to maximization of Linsker’s as-if Gaussian
criterion

2IG(x, y) = log |Σxx| − log |Σxx − ΣxyΣ
−1
yy ΣT

xy| + c, (4.2)

where Σxx, Σxy, and Σyy are the partitions of decoder covariance Σ, and c is an
irrelevant constant. In other words, maximization of Linsker’s criterion IG may
be seen as a special case of the variational information-maximization formulation
for linear Gaussian decoders, independently of the specific encoder parameteriza-
tion. Clearly, the objective (4.2) may be expressed as a function of the encoder
parameters. After training, the learned parameters may be used for producing
lower-dimensional representations y for the given sources x by forward-sampling
from the encoder p(y|x) (or computing the conditional mean 〈y|x〉p(y|x)).
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4.1.1.1 Nature of Optimal Solutions

In the considered special case of a linear Gaussian channel, the encoder is given
by p(y|x) ∼ N (Wx,Σy|x), and p(x) is the empirical distribution of the training
patterns. It is now easy to show that the left singular vectors of the optimal
projection weights WT give rise to the |y|-PCA solution on the sample covariance

S
def
= 〈xxT 〉 (for clarity, we assume that the data is centered). The remaining

moments may be trivially expressed as

〈xyT 〉 = SWT , (4.3)

〈yyT 〉 = Σy|x + WSWT . (4.4)

Then by substituting into (4.2), we get

Ĩ(x, y) = log |S − SWT (WSWT + Σy|x)
−1WS|−1 + c

= log |S−1 + WTΣy|xW| + c, (4.5)

where we used the matrix inversion lemma (e.g. Press et al. (1992)) and let c be
a constant.

To explore spectral properties of the optimal solutions, we will now consider
the singular value decomposition of the weights, i.e. WT = VLRT ∈ R

|x|×|y|. Here
V ∈ R

|x|×|y| is a matrix of orthonormal columns, i.e. VT V = I|y|, L ∈ R
|y|×|y|

is a diagonal, and R ∈ R
|y|×|y| is a rigid rotation matrix. By assuming that

the irreducible channel noise is white (i.e. Σy|x = σ2I), we may transform the
objective (4.5) into

Ĩ(x, y) = log |S−1 + σ−2VL2VT | + c. (4.6)

Clearly, the orthonormality constraint on the projection weights WWT = I|y|
implies L = I (which also ensures convergence of the objective (4.6)). This leads
to

Ĩ(x, y) = log |S−1 + σ−2VVT | − tr
{
M(VT V − I)

}
. (4.7)

A straight-forward matrix optimization for V ∈ R
|x|×|y| leads to

(S−1 + σ−2VVT )V = VM−1σ−2, (4.8)

i.e.
S−1V = VM̃, where M̃

def
= (M−1 − I)σ−2, (4.9)

where M ∈ R
|y|×|y| is a matrix of Lagrange multipliers. Without loss of generality,

we may assume that M̃ is symmetric (since tr {M} = tr
{
MT

}
), i.e. the weights

V satisfying the extremum criterion (4.9) correspond to eigenvectors of S−1 and
their rigid rotations. Since the objective (4.6) is not influenced by the rotation
factor, we may as well ignore them in our analysis.

Finally, by substituting (4.9) into (4.6) and expressing the objective in terms
of the eigenspectra of the sample covariance S, it is easy to see that the optimal
weights V correspond to principal components of S. Indeed, (4.9) implies that
the objective (4.6) may be expressed as

Ĩ(x, y) = log
∣
∣
∣V(Λ−1

S + σ−2I)VT + ṼΛ̃−1
S ṼT

∣
∣
∣ + c. (4.10)
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Here Ṽ ∈ R
|x|×|x|−|y| are the eigenvectors of S which are orthonormal to the space

spanned by V ∈ R
|x|×|y|, i.e.

VVT + ṼṼT = I|x|, (4.11)

and ΛS ∈ R
|y|×|y|, Λ̃S ∈ R

|x|−|y|×|x|−|y| are the eigenvalues of S corresponding to
V and Ṽ respectively. From (4.9) it is clear that Λ̃S and Ṽ define the spectrum
discarded by the projection weights W. The new objective (4.10) may be equiv-
alently expressed as

Ĩ(x, y) =
∑

i∈R

log(λ−1
i + σ−2) +

∑

j /∈R

log λ−1
j + c, (4.12)

where λi is the ith eigenvalue of the sample covariance, and R specifies the spec-
trum retained in W. Equivalently, we may get

Ĩ(x, y) =
∑

i∈R

log(λ−1
i + σ−2) −

∑

j /∈R

log λj + c

=
∑

i∈R

log(λi + σ2) − |y| log σ2 − log |S| + c. (4.13)

From (4.13) it is clear that the bound Ĩ(x, y) is maximized when the spectrum R
retained in the projection weights W indeed corresponds to the principal compo-
nents of the sample covariance. This may be further related to the special case
of noiseless linear autoencoders discussed in the early work of Baldi and Hornik
(1989) and Oja (1989), which may be obtained from (4.13) by computing the
limit at σ2 → 0 and using the result of proposition 3.4.

4.2 Optimization of the Auxiliary Variational Bound

Importantly, the result of Section 4.1.1 suggests that optimization of Linsker’s
criterion for isotropic linear Gaussian channels cannot improve on the simple |y|-
PCA projections. Since optimization of Linkser’s criterion may be viewed as a
special instance of the IM algorithm with linear Gaussian variational decoders, a
natural question to explore is how the linear projections could be affected by using
more complex decoder types. A principal conceptual difficulty of applying the
bound (2.2) is in specifying a powerful yet tractable variational decoder q(x|y).
Here we consider a richer family of tractable auxiliary variational bounds on
I(x, y) (see Section 2.3), which may overcome the fundamental limitations of
Linsker’s criterion.

The key idea of the auxiliary variational method (Agakov and Barber (2005a))
is to introduce mappings to the auxiliary space {z} in a way which does not affect
the original channel p(y|x), and learn the resulting joint distribution p(x, y, z) =
p(x, y)p(z|x, y) of the sources x, encodings y, and auxiliary (“feature”) variables z
(see Section 2.3 for a detailed discussion). By applying straight-forward algebraic
manipulations, we may obtain a tractable lower bound on I(x, y)

I(y, x) ≥ Ĩ(y, x)
def
= H(x) + H(z|x, y) + 〈log q(x|y, z)〉p(x,y,z) + 〈log q(z|y)〉p(y,z).(4.14)
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The variational distributions q(x|y, z) and q(z|y), as well as the auxiliary condi-
tional p(z|x, y) are chosen to ensure tractability of the objective (4.14). Then it
is tractable to optimize Ĩ(x, y) for the channel encoder, variational decoder, and
the auxiliary conditional distributions. Effectively, we will still be learning an
optimal constrained encoder (p(y|x) ∼ N (Wx,Σ) in the special case we consider
here), but for a richer family of variational distributions. Note that if the auxil-
iary space is discrete (for example, if a single auxiliary variable z is multinomial),
the variational decoder q(x|y) = 〈q(x|y, z)〉q(z|y) is indeed defined as a multi-modal
distribution.

4.2.1 Representations

Here we discuss a tractable choice of the variational parameters of Ĩ(x, y) for a
linear Gaussian channel p(y|x) with constrained projection weights. In the model
which we consider, the auxiliary space is given by the multinomial variable z
which takes one of |z| possible states {z1, . . . , z|z|}. The encoder and the auxiliary
conditional distributions are given by p(y|x) ∼ Ny(Wx;Σ) and

p(zj|x, y) = p(zj|x) ∝ exp{−(vT
j x + bj)} (4.15)

respectively. Here W ∈ R
|y|×|x|
C , V = {v1, . . . , v|z|} ∈ R

|x|×|z|, and b ∈ R
|z| are

weights and biases to be learned, where we have assumed that R
|y|×|x|
C ⊆ R

|y|×|x|

is a subspace of encoder weights satisfying specific constraints (with R
|y|×|x|
C ≡

R
|y|×|x| if the weights are unconstrained). For computational convenience, we

assumed that the auxiliary variables z are conditionally independent of the codes
y, i.e. I(z, {x, y}) = I(z, x). Also, during learning we constrained the variational
distribution used for reconstruction of the data x and auxiliary variables z to
satisfy

q(x, z|y) ∝ q(x|y, z)q(z), (4.16)

which facilitates computations of the integrals in Ĩ(x, y).
Clearly, for the considered parameterization the objective (4.14) is trans-

formed into

I(x, y) ≥ H(z, x) + 〈log q(z|y)〉p(z,y) + 〈log q(x|y, z)〉p(x,y,z). (4.17)

Note that for an arbitrary mixture decoder q(x|y), the computational complexity
of evaluating the first two terms in the bound is linear in the number of states
|z|. In general, computation of 〈log q(x|y, z)〉p(x,y,z) is more problematic, since
it requires averaging of a non-factorized function of the codes over the channel
distribution p(y|x). For the special case when each component is a Gaussian
with a constrained mean q(x|y, zj) ∼ Nx(Ujy, Sj), the rightmost term in (4.17) is
expressed as

〈log q(x|y, z)〉p(x,y,z) = −
1

2M

|z|
∑

j=1

M∑

i=1

p(zj|x
(i))tr

{

S−1
j

(

d
(i)
j d

(i)T
j + UjΣUT

j

)}

−
1

2M

|z|
∑

j=1

log |Sj|
M∑

i=1

p(zj|x
(i)). (4.18)
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Here we ignored the irrelevant constants and defined

d
(i)
j

def
= x(i) − UjWx(i) ∈ R

|x| (4.19)

to be the distortion between the ith pattern and its reconstruction from a noise-
less code at the mean of q(x|y, zj). From (4.17) and (4.18) it is easy to see that

small values of the distortion terms d
(i)
j lead to improvements in the bound on the

mutual information. This agrees with the intuition that the trained model should
favour accurate reconstructions of the source patterns from their compressed rep-
resentations passed through a noisy channel.

4.2.2 Learning Optimal Parameters

From (4.17) it is clear that the optimal settings of the auxiliary conditionals are
given by

q(z|y) = p(z|y) ∝
M∑

i=1

p(z|x(i))p(y|x(i)). (4.20)

It is now possible to derive an iterative learning rule for the parameters of q(x|y, z),
p(y|x) and p(z|x). These results are obtained by computing matrix derivatives of
Ĩ(x, y) and (where possible) deriving the closed-form fixed-point updates. The
updates are performed iteratively, assuming parameter independence at each it-
eration. We will state and briefly discuss the results, omitting the straight-forward
derivations.

Optimal decoder: It is easy to see that the considered variational decoder defines
a constrained mixture of Gaussians q(x|y) = 〈q(x|y, z)〉q(z|y), where q(x|y, zj) ∼
Nx(Ujy, Sj). For each component j, the optimal weights Uj parameterizing the
component’s mean are given by

U
(new)
j =

(
M∑

i=1

p(zj|x
(i))x(i)x(i)T WT

) (
M∑

i=1

p(zj|x
(i))

(
Wx(i)x(i)T WT + Σ

)

)−1

(4.21)

where we have assumed that at the current iteration of the algorithm the encoder
weights W are fixed. Similarly, the update for the components’ covariances is
given by

S
(new)
j =

M∑

i=1

p(zj|x
(i))

(

d
(i)
j d

(i)T
j + U

(new)
j Σ

(

U
(new)
j

)T
)

1
∑M

i=1 p(zj|x(i))
. (4.22)

Here Σ is the covariance of the channel noise (which is presumed to be fixed and

independent of x and y), and the distortion d
(i)
j ∈ R

|x| is given by (4.19) computed

for the new decoder weights U
(new)
j . Perhaps not very surprisingly, the fixed point

equations (4.21) and (4.22) resemble maximum-likelihood updates for mixtures of
constrained Gaussian distributions. The constraints are influenced by the specific
choice of encoder and decoder distributions, as well as the mapping to the aux-
iliary space. Note that for noisy channels and non-singular decoder weights Uj,
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computation of the inverses in (4.21) should not be numerically unstable. How-
ever, in order to ensure numerical stability of optimization for the case of small
datasets or near-singular decoder weights Uj, it may be practical to increment Sj

by a multiple of the identity matrix with a small positive scaling factor (which
would correspond to learning the constrained covariances Sj + ǫI|y| for ǫ > 0 and
j = 1, . . . , |z|).

Optimal auxiliary mappings:
One way to learn the optimal auxiliary conditional p(z|x) is by performing nu-
merical ascent on Ĩ(x, y) with respect to the parameters of the conditional. The
gradients are computed from (4.17) as

∂Ĩ

∂vj

=
1

M

M∑

i=1

x(i)p(zj|x
(i))

(
〈e(z, x(i))〉p(z|x(i)) − e(zj, x

(i))
)
, (4.23)

where
e(zj, x

(i))
def
= q̃ji + log q(zj) −

(
1 + log p(zj|x

(i))
)
, (4.24)

and q̃ji
def
= 〈log q(x(i)|y, zj)〉p(y|x(i)) is given by expression (4.18) computed for the

new settings of the decoder parameters Uj and Sj. Again, zj is the state of the
auxiliary variable z, and i is an index of a training pattern. The gradients for the
biases ∂Ĩ/∂bj have a form similar to (4.23), with an omitted pre-multiplication
by x(i) in the summation. Note that throughout the iterations for V ∈ R

|x|×|z|

and b ∈ R
|z|, the posterior p(z|x) and the average q̃ji may be kept fixed. For

this case, evaluation of the gradient (4.23) is computationally efficient, as the
complexity of computing the averages is just O(|z|M). Having computed the
updated parameters of the auxiliary conditional, we can use (4.15) to obtain
p(new)(zj|x

(i)) for all j = {1, . . . , |y|} and i = {1, . . . ,M}.

Optimal encoder:
Throughout the learning, we assumed that the covariance Σ of the Gaussian
encoder was fixed (which corresponds to a fixed channel noise distribution). In
this case, optimization for the encoder p(y|x) reduces to learning the projection
weights W. From (4.17), it is easy to get

∂Ĩ

∂W
=

1

M

|z|
∑

j=1

M∑

i=1

[(

U
(new)
j

)T (

S
(new)
j

)−1 (

I|x| − U
(new)
j W

)]

x(i)x(i)T p(new)(zj|x
(i)),

(4.25)

where we implied that the weights W ∈ R
|y|×|x|
C ⊆ R

|y|×|x| lie in the matrix space

R
|y|×|x|
C satisfying any of the required constraints on the encoding weights. In

general, if the number of mixture components |z| > 1, it is not easy to find a
closed form expression for W. Instead, we may perform numerical optimization
of the bound Ĩ(x, y) for W (subject to the constraints).

Generally, as we mentioned in Section 4.1, the encoder formulation facilitates
the choice of constraints on the encoder distribution p(y|x). For example, in our
case it is easy to incorporate norm constraints on W into the objective function
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(4.17). In the simplest case when the constraints are soft, (i.e. when the Lagrange
multipliers are fixed), this would result in the regularization penalty −DW on
the gradient (4.25), where D = {Dijδij|Dii ≥ 0} ∈ R

|y|×|y| is a fixed diagonal
matrix. Alternatively, we can impose hard constraints on the encoder weights by
considering a specific construction in a way which always results in the desired
singular spectrum. For example, we may impose the othonormality constraints
on the rows of W by parameterizig the weights as

W = (W̃W̃T )−1/2W̃, (4.26)

where W̃ ∈ R
|y|×|x| is an arbitrary rank-|y| real-valued matrix. Clearly, (4.26) im-

plies the desired orthonormality constraint on the projection weights, as WWT =
I|y|. Other kinds of constraints on the encoder parameters may potentially be con-

sidered. For example, if W = {wij} ∈ R
|y|×|x|
C is constrained to a hyper-cube (cf

expression (4.26)), we may parameterize each weight component as wij = f(w̃ij),
where f : R 7→ [−ω, ω] defines a mapping from the real space to a closed line

segment. Learning the encoder parameters W ∈ R
|y|×|x|
C would then involve uncon-

strained optimization of Ĩ(x, y) for W̃ = {w̃ij} ∈ R
|y|×|x|, with the corresponding

gradients obtained from (4.14) and (4.25) by the chain rule. Note that while
the mean of the considered encoder p(y|x) is linear in the constrained encoder

parameters W ∈ R
|y|×|x|
C , it is generally nonlinear in W̃ ∈ R

|y|×|x|.
Finally, we note that at the end of each iteration of the optimization procedure,

it is necessary to re-compute the moments q̃ji and the prior on the auxiliary
variables q(z) according to (4.18) and (4.20) respectively. The iterations of (4.20)
– (4.25) continue until convergence or meeting a termination criterion.

4.2.2.1 Role of the Auxiliary Variables

By analogy with Section 2.3, we may interpret the information maximization
framework from the communication-theoretic viewpoint. As the objective func-
tion which we optimize is the lower bound on I(x, y) (bounding the channel ca-
pacity in the stochastic communication channel x → y), we presume that the
auxiliary variables z are not transmitted across the channel. Their purpose in
this context is to define a richer family of variational bounds on the true mutual
information in x → y. This auxiliary variational family of lower bounds includes
the generic bound (4.1) as a special case. (Indeed, we can easily see that by
allowing a flexibility in the mappings to the auxiliary space, we may obtain the
bounds which are at least as tight as (4.1). Generally, the simple bound (4.1)
arises as a special case of (4.14) when z takes a single state). The role of the
auxiliary variables z in this context is to capture regularities in the training data
and introduce additional dependencies and multi-modality to the structure of the
variational decoder.
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4.2.3 Learning Optimal Representations in the Augmented

{y, z}-space

Now suppose that the auxiliary variables z are actually observable at the receiver’s
end of the channel. Under this assumption, we may consider optimizing an alter-
native bound ĨH(x, {y, z}) ≥ I(x, y), defined by analogy with (2.2). (We will use
the index IH to indicate that the channel x → {y, z} is generally heterogeneous;
for example, z may be a vector of generally unknown class labels, while y ∈ R

|y|

may define a lower-dimensional projection). It will lead to a slight simplification
of (4.14), which effectively reduces to

ĨH(x, {y, z}) = H(x) + 〈log q(x|y, z)〉p̃(x)p(y|x)p(z|x), (4.27)

where the cross-entropic term is given by (4.18). For our specific case, this leads
to a change in the updates for parameters of the auxiliary conditional p(z|x),
which in this case leads to

∂Ĩ

∂vj

=
1

M

M∑

i=1

x(i)p(zj|x
(i))

(
〈log q(x(i)|y, z)〉p(y,z|x(i)) − 〈log q(x(i)|y, zj)〉p(y|x(i))

)

(4.28)
(again, the gradients ∂Ĩ/∂bj are given by expression (4.28) without the x(i) factor
inside the summation). Clearly, the averages in (4.28) are easy to compute, as
both q(x(i)|y, zj) and p(y|x(i)) in this case are Gaussians. The updates (4.21),
(4.22), and (4.25) for the remaining parameters are not affected by the change in
the channel definition.

Note that in the communication-theoretic interpretation of the considered
case, the auxiliary variables z will need to be communicated over the channel
(generally, at a small increase in the communication cost, which in this case is
of the order of |y| + |z|). For the model parameterization described in Section
4.2.2, this would correspond to sending an additional natural number z, which
would effectively index the decoder used at the reconstruction. Generally, the
compressed representations of {x} will include not only the codes {y}, but also the
auxiliary labels z. Finally, we may note that unless p(z|x) is strongly constrained,
the mapping x → z will typically tend to be nearly noiseless, as this would
decrease H(z|x) and maximize I(x, {y, z}).

4.2.3.1 Comparison with Mixtures of Probabilistic Principal Component

Analyzers

It is interesting to compare the IM framework with the likelihood-based training
for mixtures of latent variable models (where the auxiliary variables z are the
mixture components, and y are the latent variable representations of the data
patterns). For such models the likelihood may be expressed as

L
def
=

〈
log〈q(x|y, z)〉q(y)q(z)

〉

p̃(x)
, (4.29)

where p̃(x) is the empirical distribution. Effectively, q(x) defines a mixture of
latent variable models. While the objective (4.29) is generally different from
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ĨH(x, {y, z}) (see expression (4.27)), for several special cases we may observe a
close relation between maximizing (4.29) in a mixture model and learning the
optimal variational decoders in the context of variational information maximiza-
tion.

In particular, for the special case of learning linear projections of the data
patterns to a lower-dimensional space, we can compare the I-step of the IM algo-
rithm in our formulation with the M-step of the EM algorithm applied to training

mixtures of probabilistic PCA models ML
def
= q(y)q(z)q(x|y, z), where q(z) is a

multinomial distribution, q(y) ∼ Ny(0,1), and q(x|y, zj) ∼ Nx(Ujy, s
2
j) (Tipping

and Bishop (1999a), Tipping and Bishop (1999b)). For mixtures of PPCAs, the
updates for parameters of the mixture components may be expressed as

U
(new)
j =

(
M∑

i=1

p(zj|x
(i))x(i)〈yT 〉

q
(i)
j

) (
M∑

i=1

p(zj|x
(i))

(

〈y〉
q
(i)
j

〈yT 〉
q
(i)
j

+ Σ
)
)−1

(4.30)
and

(

s
(new)
j

)2

=
M∑

i=1

p(zj|x
(i))

|x|
∑M

i=1 p(zj|x(i))
tr

{

(x − Uj〈y〉q(i)
j

)(x − Uj〈y〉q(i)
j

)T + U
(new)
j Σ

(

U
(new)
j

)T
}

(4.31)
(see Tipping and Bishop (1999a)), where the expectations of the codes are com-
puted over the exact component-based posteriors 〈y〉

q
(i)
j

≡ 〈y〉q(y|x(i),zj). The poste-

rior is easily expressed from the mixture model ML by Bayes rule q(y|x(i), zj) ∝
q(x(i)|y, zj)q(y), which for the considered case gives a Gaussian with the mean
〈y〉

q
(i)
j

= (s2
j I|y| + UT

j Uj)
−1UT

j x(i) (see e.g. von Mises (1964)).

It is easy to see that under the assumption of isotropic Gaussian mixture
components, learning the decoder at the I-step of the variational information-
maximizing algorithm given by (4.21) and (4.22) has the same form as the PPCA
updates (4.30) and (4.31), with the difference that expectations of the codes 〈y〉
are computed over the explicitly constrained encoder p(y|x(i), zj) rather than the
posterior q(y|x(i), zj) expressed from the generative model ML by applying Bayes
rule. These distributions are generally different; particularly, as we mentioned in
Section 4.1, the explicit parameterization of p(y|x(i), zj) makes it easier to impose
the required constraints on the communication channel, while the exact analytical
form of q(y|x(i), zj) might not necessarily satisfy such constraints. Generally, the
information-theoretic learning of the optimal encoder involves optimization of the
bound ĨH(x, {y, z}) in the space of constrained encoder parameters, rather than
probabilistic inference in the generative model ML.

Interestingly, we can demonstrate that while the considered variational frame-
work for maximizing the bound on mutual information is generally different from
maximizing the likelihood in a mixture of probabilistic PCA models, under the
assumption of a fixed Gaussian channel noise it gives rise to the same fixed points
as a variational EM applied to fitting a mixture of constrained Gaussians with the
components q(x|y, zj) ∼ Nx(Ujy, s

2
j) and the uniform (rather than the Gaussian)

distribution of the hidden variables (i.e. q(y) ∼ Uy). In other words, this specific
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application of our framework leads to the same solutions as a variational approach
to fitting a mixture of factor analysis-like models with the uniform (rather than
the Gaussian) distribution of the hidden factors. We discuss the link between
these methods in Appendix B.2.

4.2.3.2 Comparison with Mixtures of Latent Variable Models

By analogy with the results of Chapter 3, we may point out general differ-
ences between maximizing the likelihood in mixture models and maximizing the
bound on the mutual information in hybrid channels. In particular, the varia-
tional IM algorithm applied to training the encoder model of a hybrid channel

MI
def
= p̃(x)p(y, z|x) may be compared with the conventional fitting of a mixture

of latent variable models ML = p(y)p(z)p(x|y, z) to a data set given by the em-
pirical distribution p̃(x). Not surprisingly, the solutions obtained by training the
generative and the encoding models would generally be different. By analogy
with proposition 3.1, we may show that for the special case when the posteriors
of ML and MI are constrained to be equivalent, we may define tractable varia-
tional lower bounds on I(x, {y, z}) which are at least as tight as (and sometimes
significantly tighter than) the bound given by the exact likelihood. Effectively,
this means that if the goal is to maximize information content which the hidden
codes y and component labels z contain about the data patterns x, the vari-
ational information-maximizing framework should generally be more preferable
than maximum-likelihood approaches (at least, in terms of the resulting bounds
on I(x, {y, z})). Some of the intersections of the approximate approaches to like-
lihood and mutual information maximization are described in Appendix B.2.

Furthermore, we note once again that the encoder and the generative frame-
works are different conceptually. Fundamentally, the goal of maximizing the
mutual information in the hybrid channel x → {y, z} is to learn the encoder
model (a specific tractable choice of the variational decoder is something which
facilitates the generally intractable computations). In contrast, the conceptual
goal of likelihood training would be to fit the generative model to data, which
in our framework would correspond to learning the variational decoder (and the
marginal distribution of the hidden variables). As discussed in Chapter 3 and
Section 4.1, the fundamental feature of the encoder framework is the possibility
of specifying explicit constraints on the encoder model p(y|x). Thus, the sug-
gested variational information-maximizing framework is particularly convenient
in situations when our goal is to learn unknown constrained encodings of the
visible patterns (in practice, such constraints might be artifacts of biophysical or
engineering requirements). In general, this is different from generative models,
where the desired constraints on the posterior (encoding) mapping p(y|x) would
need to follow from the explicit parameterization of the priors p(y) and condi-
tionals p(x|y). It is therefore intuitive that it may be rather difficult to apply
generative models for addressing constrained encoding problems exactly. For ex-
ample, apart from relatively simple cases (e.g. when ML is the probabilistic PCA
model (Tipping and Bishop, 1999b)), it is difficult to apply an exact generative
framework for learning an L-optimal orthonormal projection of the data. As
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we showed, the problem may be conveniently addressed within the information-
maximization framework, where the encoder constraints may be satisfied as a
part of the model’s specification.

4.3 Demonstrations

Here we demonstrate a few applications of the method to extracting optimal
orthonormal subspaces for the digits dataset (which is a sub-sampled lower-
dimensional version of MNIST, LeCun and Cortes (1998)). As mentioned in
Section 4.2.3, apart from simple cases the problem cannot be easily addressed by
exact applications of generative models, as we would require specific orthonor-
mal constraints on the posterior distributions. In all cases, it was assumed that
|y| < |x|. We also assumed that p(x) = p̃(x) is the empirical distribution.

4.3.1 Hand-Written Digits: Comparing the Bounds

In the first set of experiments, we compared optimal lower bounds on the mu-
tual information I(x, y) obtained by maximizing the as-if Gaussian IG(x, y) and
the auxiliary variational Ĩ(x, y) objectives for hand-written digits. The dataset
contained M = 30 gray-scaled instances of 14-by-14 digits 1, 2, and 8 (10 of each
class), which were centered and normalized. The goal was to find an orthogonal
projection of the |x| = 196-dimensional training data into a |y| = 6-dimensional
space, so that the bounds IG(x, y) and Ĩ(x, y) were maximized. By analogy with
Section 4.1.1, we considered a linear Gaussian channel with an irreducible white
noise, which in this case leads to the encoder distribution p(y|x) ∼ Ny (Wy, s2I)
with W ∈ R

6×196. Our interest was in finding optimal orthogonal projections, so
the weights were normalized to satisfy WWT = I|y| (by considering the parameter-

ization W = (W̃W̃T )−1/2W̃ with W̃ ∈ R
|y|×|x|). Effectively, this case corresponds

to finding the most informative compressed representations of the source vectors
for improving communication of the non-Gaussian data over a noisy Gaussian
channel (by maximizing lower bounds on the channel capacity). Our specific
interest here was to find whether we may indeed improve on Linsker’s as-if Gaus-
sian bound on the mutual information (with the optima given in this case by the
PCA projection) by considering a richer family of auxiliary variational bounds
with multi-modal mixture-type decoders.

Figure 4.1 shows typical changes in the auxiliary variational bound Ĩ(x, y) as a
function of the IM’s iterations T for |z| ∈ {2, . . . , 5} states of the discrete auxiliary
variable. (On the plot, we ignored the irrelevant constants H(x) identical for
both Ĩ(x, y) and IG(x, y), and interpolated Ĩ(x, y) for the consecutive iterations).
The mappings were parameterized as described in Section 4.2, with the random
initializations of the parameters vj and bj around zero, and the initial settings of
the variational prior q(z) = 1/|z|. The encoder weights W were initialized at 6
normalized principal components Wpca ∈ R

6×196 of the sample covariance 〈xxT 〉,
and the variance of the channel noise was fixed at s2 = 1. For each choice of
the auxiliary space dimension |z|, Figure 4.1 (a) shows the results averaged over
30 random initializations of the IM algorithm. As we see from the plot, the IM
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Figure 4.1: Variational information maximization for noisy constrained dimensional-
ity reduction. (a): Top curves: Average values of the variational auxiliary bounds
Ĩ(x, y), obtained by the IM algorithm started at 10 random model initializations
(shown for |z| = 2, . . . , 5); bottom line: the as-if Gaussian IG(x, y) bound (computed
numerically). The results are shown for the digits data with |x| = 196, |y| = 6
for M = 30 patterns and T = 30 iterations of the IM. (b): Hinton diagram for
WWT

pca(WWT
pca)

T ∈ R
6×6 for |z| = 3, T = 30. For orthonormal weights spanning

identical subspaces, we would expect to see the identity matrix.

learning leads to a consistent improvement in the auxiliary variational bound,
which (on average) varies from Ĩ0(x, y) ≈ 745.7 to ĨT (x, y) ≈ 822.2 at T = 30 for
|z| = 5. Small variances in the obtained bounds (σT ≈ 2.6 for T = 30, |z| = 5)
indicate a stable increase in the information content independently of the model
initializations. From Figure 4.1 (a) we can also observe a consistent improvement
in the average Ĩ(x, y) with |z|, changing as Ĩ10(x, y) ≈ 793.9, ≈ 806.3, ≈ 811.2,
and ≈ 812.9 for |z| = 2, . . . , 5 after T = 10 IM’s iterations. In comparison, the
PCA projection weights Wpca result in IG(x, y) ≈ 749.0, which is visibly worse
than the auxiliary bound with the optimized parameters, and is just a little better
than Ĩ(x, y) computed at a random initialization of the variational decoder for
|z| ≥ 2.

Importantly, we stress once again that the auxiliary variables z are not passed
through the channel. In the specific case which we considered here, the auxil-
iary variables were used to define a more powerful family of variational bounds
which we used to extract the Ĩ-optimal orthonormal subspace. The results are
encouraging, as they show that for a specific constrained channel distribution we
may indeed obtain tighter lower bounds on the mutual information I(x, y) without
communicating more data than in the conventional case. Specifically, for Gaus-
sian channels with orthonormal projections to the code space, we do improve on
simple as-if Gaussian solutions (leading to the PCA projections) by considering
optimization of the auxiliary variational bounds (4.14).
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Figure 4.2: Histogram bars: marginal variances of the orthonormal noisy projections
of the data patterns 〈(yi − 〈yi〉)

2〉p(yi|x)p̃(x) along each of i = 1, . . . , 6 dimensions of
the code space. The code space R|y| is spanned by Wpca and W, for Linsker’s and the
auxiliary variational objectives respectively. Vertical lines: variances of the average
distances for M = 30 data patterns. The results are shown for |x| = 196, |y| = 6;
the auxiliary space size |z| = 3; the number of iterations T = 30.

As expected, we may also note that the Ĩ-optimal encoder weights W are
in general different from rotations of Wpca. This is easy to see by computing
WWT

pca(WWT
pca)

T , which in our case is visibly different from the identity matrix
(see Fig. 4.1 (b) for |y| = 6 and |z| = 3), which we would have expected to obtain
otherwise. Effectively, this means that by allowing a greater flexibility in the
choice of the variational decoder distributions, the Ĩ(x, y)-optimal constrained
encoders become different from the optimal encoders of simpler models. This
result is intuitive: it is natural to expect that a richer structure of the decoder
model may change our notion of the optimal codes (at least, at the stage of
optimizing Ĩ(x, y)). And vice versa, a choice of simple variational decoders (such
as linear Gaussians) may impose severe constraints on the types of codes which
they can decode efficiently, which may lead to a loss in the coding efficiency and
result in a general reduction in the retained information content (see Chapter 5.3
for a more detailed discussion).

Finally, figure 4.2 shows average distances of the noisy linear projections of
the testing data from the y-space mean (i.e. the marginal variance of the codes)
for M = 30 patterns. The histogram indicates the variances of the projections
for each of the |y| = 6 dimensions of the code space, spanned by Wpca and W
(for Linsker’s and the auxiliary variational bounds respectively). The results are
shown for M = 30 digit patterns after T = 30 iterations of learning (again,
we assumed that the size of the auxiliary space |z| = 3). We can see that the
encoded representations produced by the auxiliary variational method result in a
more uniform spectrum of the projection variances, with roughly equal error bars.
This result is not unexpected, as under the fixed channel noise assumption, the
information content between the data and the codes increases with an increase
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Figure 4.3: Reconstructions of the source patterns from encoded representations.
(a): A subset of the generic patterns used to generate the source vectors; (b): the
corresponding reconstructions from 6 principal components; (c): the corresponding
ĨH-optimal reconstructions at 〈x〉q(x|y,z) = Uzy for the hybrid {y, z} representations
(|y| = 6, |z| = 3).

in the entropy of the encoded representations. Whilst it is not easy to compute
the exact entropy of the mixture distribution p(y), qualitatively it is natural to
expect that more uniform encodings would typically result in higher values of the
mutual information between the encodings and the source patterns.

4.3.2 Hand-Written Digits: Reconstructions

Additionally, for the problem settings described in Sec. 4.3.1, we have computed
reconstructions of the source patterns {x} from their noisy encoded representa-
tions. First, we generated source vectors by adding an isotropic Gaussian noise
to the generic patterns (see Fig. 4.3 (a)), where the variance of the source noise
was set as s2

s = 0.5. Then we computed noisy linear projections {y} of the source
vectors by using the IG- and the ĨH- optimal encoder weights (in the latter case,
we also computed the auxiliary label z by sampling from the learned p(z|x)).
This stage corresponds to passing encoded representations over the noisy chan-
nels, where the noise variance for the Gaussian part of the channel was fixed
at s2 = 1. Finally, we have used the optimal approximate decoders to perform
the reconstructions from {y} (for IG-optimal PCA projections) and {y, z} (for
ĨH-optimal hybrid channels).

As we see from Figure 4.3 (b), (c), by a slight modification of the channel
(due to encoding and communicating a multinomial variable z), we may achieve a
visible improvement in the reconstruction of the sources by using the ĨH- optimal
projections2. The results are shown for |y| = 6, |z| = 3 after T = 3 iterations,
and the reconstructions are computed at the analytical mean of the decoder’s
component q(x|y, z) indexed by the auxiliary variable z. Even though the resulting
hybrid channel may be difficult to justify from the communication viewpoint, the

2Similar reconstructions could be obtained by maximizing the auxiliary bound Ĩ(x, y) without

communicating z. However, the approximate decoder for this case would be given as q(x|y) =
∑

z q(x|y, z)
〈p(z|x)p(y|x)〉p(x)

〈p(z|x)〉p(x)
, which requires knowing p(x).
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results suggest that maximization of the bound on I(x, {y, z}) provides a sensible
way to reduce dimensionality of the sources for the purpose of reconstructing
inherently noisy non-Gaussian patterns. Importantly, the variational decoder
q(z|x, y) which maximizes ĨH(x, {y, z}) makes no recourse to p(x). Therefore, just
like in the PCA case, we do not need to store the training instances in order
to perform an accurate reconstruction from noisy lower-dimensional projections.
We note once again that the weights of the optimal encoder were chosen to satisfy
the specific orthonormality constraint (though other kinds of constrained encoders
may easily be considered). This contrasts with the exact approaches to training
generative models, where encoding constraints may be more difficult to enforce.

4.4 Summary

Here we considered an application of the variational information maximizing ap-
proach to linear orthonormal dimensionality reduction in the presence of irre-
ducible Gaussian noise. We showed that the well-known as-if Gaussian approx-
imation of the mutual information (Linsker (1992)), which may be seen as a
special case of the variational bound for correlated linear Gaussian variational
distributions, leads to the PCA solution for isotropic linear Gaussian channels.
Importantly, this means that by using linear Gaussian variational decoders under
the considered Gaussian channel, maximization of the generic lower bound (2.2)
on the mutual information cannot improve on the PCA projections.

The situation becomes strikingly different if we consider a richer family of vari-
ational auxiliary lower bounds on I(x, y) under the same encoding constraints.
In particular, we showed that in the cases when the source distribution was non-
Gaussian, we could significantly improve on the PCA projections by considering
multi-modal variational decoders. This confirms the conceptually simple idea
that by allowing a greater flexibility in the choice of variational decoders, we may
get significant improvements over simple bounds on the mutual information at
a limited increase in the computational cost. This result is interesting from the
communication-theoretic perspective, as it demonstrates a simple and computa-
tionally efficient way to produce better bounds on the capacity of communication
channels without altering channel properties (e.g. without communicating more
data across the channels).

Finally, we discussed a simple information-theoretic approach to constrained
dimensionality reduction for hybrid representations x → {y, z}, which may signif-
icantly improve reconstructions of the sources {x} from their lower-dimensional
representations {y} at a small increase in the transmission cost (given by |z|). We
applied the hybrid framework for extracting an informative orthonormal projec-
tion subspace of the data. While being vaguely related to the exact maximum-
likelihood fitting of mixtures of latent variable models (at least, in terms of the
specified variable domains), our variational information-maximizing framework
is fundamentally different in terms of model specifications. One of the impor-
tant features of the IM framework is the explicit parameterization of the encoder
model, which is particularly convenient in situations when the goal is to learn
unknown encodings of the visible patterns for a known family of constrained
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encoder distributions. Usually, such constraints would be difficult to impose in
generative models. On the other hand, they may be easily introduced in the sug-
gested information-maximizing framework, while a tractable choice of variational
decoders simplifies the computations for large-scale stochastic channels.

Generally, we have confirmed the intuition that we may improve on simple
generic bounds on I(x, y) by considering a richer family of the auxiliary varia-
tional bounds, which effectively increase the power of the variational decoders.
On the other hand, it is natural to expect that we may maximize the informa-
tion content by considering richer families of encoder distributions. In the next
chapter we consider specific applications of the information-maximizing frame-
work to the case of nonlinear channels. We will describe theoretical properties
of Ĩ-optimal nonlinear Gaussian encoder distributions, and focus specifically on
tractable practical applications to information-theoretic clustering.
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Chapter 5

Variational Information

Maximization for Nonlinear

Dimensionality Reduction

In previous chapters we introduced a simple variational lower bound on the mu-
tual information, which resolves some of the computational difficulties of com-
puting the exact mutual information. Then we compared our framework with
the conventional learning in generative and autoencoder-type models, and con-
sidered specific applications of the variational information maximization to the
constrained dimensionality reduction. As we demonstrated in Chapter 4, the
variational lower bounds on the mutual information can be made tighter by con-
sidering more powerful families of variational decoders. It is also intuitive that
one may hope to obtain tighter bounds on the mutual information by increasing
the power of the stochastic encoder. Intuitively, by appropriately choosing non-
linear encoder distributions so that the encoder satisfies specific local constraints,
we may hope to obtain better reconstructions of the transmitted sources, more
anthropomorphically sensible visualizations in the compressed variable spaces,
etc. Here we explore these matters by considering the problem of maximizing
information content for stochastic non-linear channels.

We will focus primarily on the problem of information-theoretic clustering,
where the encoder distribution is defined by a generally stochastic, nonlinear
mapping from the source patterns to discrete cluster labels. For this case, we will
consider two principally different learning techniques. First, we will consider op-
timizing the specific lower bound on the mutual information, where the encoder
distribution of the channel is given by the exact posterior of the corresponding
generative model (see expression (3.11) and the discussion in Section 3.2.1). Ef-
fectively, this approach may be viewed as an information-theoretic method of
training generative models, which we study for the case of Gaussian mixtures.
Then we consider a different information-theoretic clustering technique, where
we maximize the exact mutual information in explicitly parameterized encoder
models. For most of the clustering applications, this may be done reasonably
easily, since the cardinality of the code space will typically be low, so that max-
imization of the exact objective will typically be computationally tractable. For
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this case, we describe a simple and practical algorithm for unsupervised discrim-
inative learning of cluster allocations. By allowing the flexibility in the choice of
the encoder structure, we may consider a variety of encoder model parameteri-
zations, including those involving nonlinear projections of the source vectors into
high-dimensional feature spaces. Empirically, we demonstrate that the resulting
information-theoretic clustering approach favorably compares with the common
generative clustering methods.

In the second part of the chapter we will briefly review some of the theoretical
properties of the IM for higher-dimensional code spaces, and show that some of
the popular dimensionality reduction techniques may be seen as special instances
of the variational information maximization procedure.

5.1 Introduction

The limiting case of a dimensionality reduction problem, where the code y of a
high-dimensional pattern x is defined by a single multinomial hidden variable,
may be viewed as a simple instance of clustering. The codes {y} in this case may
be interpreted as the unknown cluster labels corresponding to the data patterns.
If the family of the generally stochastic mappings x → y satisfies specific local
constraints, the resulting cluster allocations may provide a simple anthropomor-
phically sensible visualization of generally high-dimensional patterns.

Arguably, there are at least two simple requirements which a cluster allocation
procedure should satisfy. First of all, we may require the resulting clusters of
data patterns to be locally smooth. There may be several ways to interpret
local smoothness in the clustering context; for example, it may be sensible to
require that each two patterns have a high probability of being assigned to the
same cluster if the corresponding vectors satisfy specific geometric constraints.
Secondly, we may require the clustering method to avoid assigning unique cluster
labels to outliers (or other constrained regions in the data space), so that local
regions in the data space are not over-represented in the code space.

Generally, we may expect the clusters to be well-separated if patterns x are
predictive of cluster labels y, for all the data patterns {x}. Here we argue that a
reasonable way of learning optimal cluster allocations is by maximizing the exact
mutual information I(x, y) = H(y) − H(y|x). Indeed, in the clustering context
I(x, y) may be interpreted as a measure of predictability of cluster allocations from
training patterns. Intuitively, it is clear that in contrast to the generative mixture
model clustering, optimization of I(x, y) does not intrinsically favour outliers.
(Indeed, for the fixed cardinality |y| < M of the code space, assignments of unique
cluster labels to under-represented training patterns would have resulted in a
decrease in the marginal entropy H(y). In other words, regions under-represented
in the data space would have been over-represented in the code space, which for
the fixed noise levels would have led to a reduction in the mutual information).
Generally, we may expect that the mutual information maximization favours hard
assignments of cluster labels to regions of roughly identical sizes, resulting in the
growth in H(y) and reduction in H(y|x).
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In the first part of the chapter we will discuss simple and efficient information-
theoretic clustering algorithms, which may be used for discriminative unsuper-
vised1 learning of nonlinear cluster allocations. First we will consider optimizing
the lower bound Î(x, y) = 〈log p(x|y)〉p(y|x)p̃(x), where the encoder distribution of
the channel is given by the exact posterior of the corresponding Gaussian mix-
ture model ML = p(y)p(x|y), where p(y) are mixture coefficients, and p(x|y)
are the Gaussian components. Effectively, this approach may be viewed as an
information-theoretic method of training Gaussian mixture models. We compare
this approach with the standard likelihood maximization for Gaussian mixtures,
and show that by analogy with the EM training, the IM algorithm reduces to the
k-means clustering in the limiting case of zero-variance components.

Then we consider a different information-theoretic clustering technique, where
we impose specific constraints on the encoding distribution of the channel model
MI , and maximize I(x, y) directly. Unlike most of the existing information-
theoretic approaches applicable in the clustering context (see e.g. Fisher and
Principe (1998), Torkkola and Campbell (2000), Gokcay and Principe (2002),
Dhillon et al. (2002), Corduneanu and Jaakkola (2003), Jenssen et al. (2003)),
we consider optimization of the exact mutual information in an encoder model,
which for the purpose of learning cluster allocations may be computed exactly.
Furthermore, as a straight-forward extension of our method, we consider clus-
tering in the feature space, with a constrained kernelized representation of the
encoder for nonlinearly transformed source patterns. We show that for this case
we may apply the information-maximization framework to learn the optimal ker-
nel parameters, which often leads to sensible solutions of the clustering problem.

In the last part of the chapter we extend the discussion of the information-
maximizing framework by considering other types of nonlinear encoders. We will
focus particularly on the discussion of non-linear Gaussian channels with the fixed
isotropic noise. Since in this case maximization of the mutual information cannot
be performed exactly, we consider optimizing the generic lower bound (2.2) on the
mutual information with several specific choices of the variational decoder, and
describe properties of the obtained optimal solutions. While our analysis of the
analytical properties of the IM solutions is mainly theoretical, it shows interesting
links of our variational procedure to other popular dimensionality reduction tech-
niques, inducing PCA, kernel PCA (Schoelkopf et al. (1998), Mika et al. (1999)),
and Gaussian Process Latent Variable Models (Lawrence (2003)) as special cases.
Some of these theoretical findings extend previous results for noiseless autoen-
coders (Bourlard and Kamp (1988), Baldi and Hornik (1989), Diamantaras and
Kung (1996)); however, they are derived for stochastic communication channels
and general nonlinear mappings. Most of the derivations for this chapter can be
found in Appendix C.

1As mentioned above, the encoder models are specified by explicitly parameterizing the
stochastic mapping p(y|x) to the code space, which corresponds to a similar parameterization
of a discriminative model. However, in contrast to discriminative models, the encodings y of
the sources x are presumed to be hidden in our case.
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5.2 Nonlinear Channels for Information-Theoretic

Clustering

One of the practical side-effects of Section 3.2 is a practical information-theoretic
method of training generative models (see expression (3.11)). Here we apply it
to training Gaussian mixture models. With a slight abuse of terminology, we
will refer to the method as the IM for Gaussian mixtures; by this we mean that
the encoder distribution of the channel model trained by the IM has the exact
form of the posterior p(y|x) of a Gaussian mixture model. We show that the IM
applied for training the considered models indeed provides a sensible clustering
technique. Moreover, the results help to empirically verify the theoretical findings
of Chapter 3.

5.2.1 Variational Information Maximization for Gaussian Mix-

tures

In proposition 3.1 we showed that maximization of the exact likelihood L, ex-

pressed from the generative model ML
def
= p(y)p(x|y) for i.i.d. patterns, may

be viewed as maximization of a lower bound on the mutual information in the
encoder model MI

def
= p̃(x)p(y|x), where y is a latent code, x is a source vector,

and p̃(x) is the empirical distribution. However, as we noted in Section 3.2.1, the
likelihood bound on I(x, y) may potentially be weak, and much tighter bounds
on I(x, y) may be obtained by considering a special instance of the variational
information-maximizing framework. As we showed in Section 3.2.1, the bound
provided by the likelihood is weaker or as tight as

Î(x, y) = 〈log p(x|y)〉p̃(y|x)p̃(x) + Hp̃(x) = 〈log p(x|y)〉p(y|x)p̃(x) + Hp̃(x), (5.1)

where we defined the encoding distribution of the encoder model

p̃(y|x) ∝ p(y)p(x|y) (5.2)

to be the exact posterior of the generative model ML.
As in the conventional approaches to latent variable modeling, our goal would

be to produce informative latent variable representations of the sources, so op-
timization of the tighter bound (5.1) on I(x, y) may be a reasonable strategy
to consider. Moreover, as discussed in Section 3.2.1, under the considered con-
straint on the encoder, expression (5.1) may be viewed as an information-theoretic
objective for training both the generative ML and the encoder MI models2. Ef-
fectively, this is our main motivation for considering optimization of the bound
Î(x, y). If it is indeed the case that optimization of objective (5.1) helps to avoid
common degeneracies of the likelihood solutions (such as overfitting to local data
segments), we may hope that the data generated from ML (trained by max-
imizing the bound Î(x, y)) could in some sense be more representative of the
underlying process than the data sampled from the likelihood-trained mixture.

2This contrasts with the exact likelihood and the exact mutual information training which
are commonly applied to training generative and encoder models respectively.
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Here we will consider a simple case when ML is a Gaussian mixture, where
y ∈ {yj|j = 1, . . . , |y|} is the mixture label, and p(x|yj) ∼ Nx(µj,Σj), where

µj ∈ R
|x|, Σj ∈ R

|x|×|x| are the mean and the covariance corresponding to the jth

component yj. The objective Î(x, y) may be easily expressed as

Î(x, y) =
1

M

M∑

m=1

|y|
∑

j=1

p(yj)p(x(m)|yj)

p(x(m))
log p(x(m)|yj), (5.3)

which needs to be optimized for p(yj) and µj,Σj for all j = 1, . . . , |y|. For sim-
plicity, we will start the discussion of the resulting optimization procedure by
implying the constraints on the optimized parameters. Effectively, this implica-
tion allows us to treat all the parameters (including the mixture coefficients) as
unconstrained vectors in high-dimensional real spaces; we will impose meaningful
construction constraints shortly.

5.2.1.1 Learning Optimal Parameters

By computing the matrix derivatives of (5.3) for Σj and µj (see e.g. Magnus and
Neudecker (1999), Minka (2000)), it is easy to find that

∂Î(x, y)

∂µj

= −
1

M

M∑

m=1

Σ−1
j (x(m) − µj)p(yj|x

(m))(α̂
(m)
j + 1) (5.4)

∂Î(x, y)

∂Σj

= −
1

2M

M∑

m=1

Σ−1
j

(
(x(m) − µj)(x

(m) − µj)
TΣ−1

j − I|x|
)
p(yj|x

(m))(α̂
(m)
j + 1),

(5.5)

where

α̂
(m)
j

def
= log p(x(m)|yj) −

|y|
∑

l=1

p(yl|x
(m)) log p(x(m)|yl)

= log
p(x(m)|yj)

p(x(m))
− KL

(
p(y|x(m))‖p(y)

)
, (5.6)

and p(yj|x
(m)) is the exact posterior expressed from the generative model ML.

Note that in the trivial case when α̂
(m)
j = const for all m = 1, . . . ,M and

j = 1, . . . , |y|, the gradients (5.4) and (5.5) are identical to those obtained by max-
imizing the log-likelihood of a Gaussian mixture model (up to irrelevant constant
pre-factors). We may further express the functional derivatives (e.g. Gelfand and
Fomin (1963), Weinstock (1974), Smith (1998)) for the mixture coefficients p(yj)
to get

∂Î(x, y)

∂p(yj)
=

1

M

M∑

m=1

p(yj|x
(m))

p(yj)



log p(x(m)|yj) −

|y|
∑

l=1

p(yl|x
(m)) log p(x(m)|yl)





=
1

M

M∑

m=1

p(yj|x
(m))

p(yj)
α̂

(m)
j . (5.7)
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(again, we have implied that the mixing coefficients p(yj) lie in a convex space
(e.g. Boyd and Vandenberghe (2004)), i.e. there is no need to explicitly incorpo-

rate Lagrange multipliers into the objective (5.3)). If the coefficients α̂
(m)
j were

constant, we could use (5.7) to derive the fixed-point updates for p(yj) (subject
to the normalizing constraints), which in this case would lead to the updates of
the iterative EM algorithm for Gaussian mixtures (e.g. Bishop (1995)).

From (5.4) – (5.7) we see that for Gaussian mixture models, optimization
of the likelihood L and the bound Î(x, y) result in generally different learning

rules, as specified by the model-dependent weighting coefficients α̂
(m)
j . Note that

α̂
(m)
j includes the Kullback-Leibler divergence between the posteriors p(y|x) and

the prior p(y), which quantifies the difference between the likelihood and the
information-theoretic objectives (see expression (3.4)). It is easy to see that in
the degenerate case when the latent variables are independent of the data (i.e.

for p(y|x) = p(y)), the factor α̂
(m)
j will become irrelevant, and both EM and IM

will result in simple data averaging for µj, Σj with arbitrary setting of p(yj)

– clearly, this is not an interesting case to consider. Generally, however, α̂
(m)
j

is a function of the optimized mixture coefficients p(y) and the parameters µj,
Σj, which makes it awkward to derive the closed-form iterative updates for the
model parameters. This contrasts with the standard EM algorithms (Dempster
et al. (1977)), which may be viewed as maximizing the expected complete data
log-likelihood (see e.g. Bishop (1995)).

A simple alternative to the closed-form iterative optimization could be given
by any of the known non-linear optimization methods (e.g. Bishop (1995), Den-
nis and Schnabel (1996), Bertsekas (1999), Galeev and Tihomirov (2000)), where
the optimized parameters lie in appropriately constrained spaces. In this spe-
cific case we would need to constrain the covariance matrices to ensure their
positive-definiteness; we would also need to ensure that the mixing coefficients
p(yj) follow the probability requirements. Such constraints are easy to impose
by considering meaningful non-restrictive constructions. For instance, to ensure
positive-definiteness, we may parameterize the covariances Σj as

Σj = AjA
T
j + I|x|ǫ, (5.8)

where Aj ∈ R
|x|×|x| is an arbitrary real-valued matrix and ǫ & 0 is a small constant,

which ensures that Σj is non-singular. Analogously, we may parameterize the
mixing coefficients as

p(yj) = exp{aj}/

|y|
∑

l=1

exp{al}, (5.9)

which ensures satisfaction of the probability constraints. From the existence of
the singular value decomposition of Σj (see e.g. Golub and Loan (1996)) and
continuity of aj ∈ R, it is clear that parameterizations (5.8), (5.9) are non-
restrictive3.

3In what follows we assume that ǫ → 0+, which implies that eigenvalues of Σj are the squares
of the non-negative singular vectors of Aj . Clearly, in the considered limit the construction (5.8)
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From the definition of the objective (5.1) and the construction (5.8), (5.9), it is
easy to see that the constrained optimization of Î(x, y) with respect to the covari-
ances Σj and mixture coefficients p(yj) may be transformed to the unconstrained
optimization problem for Aj and aj as

∂Î(x, y)

∂aj

= p(yj)

(

∂Î(x, y)

∂p(yj)
−

∑

l

∂Î(x, y)

∂p(yl)
p(yl)

)

,
∂Î(x, y)

∂Aj

= 2
∂Î(x, y)

∂Σj

Aj,

(5.10)
where ∂Î(x, y)/∂Σj and ∂Î(x, y)/∂p(yj) are given by (5.5), (5.7), and j = 1, . . . , |y|.
The gradients (5.4) and (5.10) for µj, Aj, and aj may then be used by a numerical

optimization procedure performing an ascent on the bound Î(x, y).
Finally, we note once again that we can view the procedure of optimizing the

bound (5.3) as a way of training the generative model ML. Once the model is
trained, we can use it for generating new training data. If optimization of the
bound Î(x, y) helps to avoid degeneracies of the L-optimal solutions, we may ex-
pect that the generated samples may be more representative of the underlying
clusters than samples from the mixture model trained by maximizing the like-
lihood. Specifically, we may hope that the information-theoretic training may
limit over-representations of the local segments of the training data, which may
occur due to possible singularities of the likelihood solutions.

5.2.1.2 Relation to the K-means Algorithm

Interestingly, we may note that in the limiting case of deterministic decoders
p(x|yj) ∼ Nx(µj,Σj) with Σj = σ2I → 0, optimization of Î(x, y) reduces to the
well-known k-means algorithm. Indeed, for this case the bound on the mutual
information may be expressed as

Î(x, y) = 〈log p(x|y)〉p(y|x)p̃(x) ∝ −
M∑

m=1

|y|
∑

j=1

‖x(m) − µj‖
2p(yj|x

(m))

= −
M∑

m=1

|y|
∑

j=1

‖x(m) − µj‖
2 p(yj)

p(yj) +
∑|y|

k 6=j p(x(m)|yk)p(yk)/p(x(m)|yj)
,

(5.11)

where we have ignored the entropy of the empirical distribution since it has no
effect on the optimization surface for p(y|x). By analogy with the well-known
limiting case of the Gaussian mixtures (see e.g. Bishop (1995)), we can see that
in the considered limit the second factor in the summation (5.11) reduces to the
Kronecker delta δ(j − arg mink ‖x

(m) −µk‖), which leads to the k-means updates
for µj (Hartigan and Wong (1979)). In other words, both the likelihood and
the variational information maximization reduce to the k-means algorithm in the
limit of zero-variance spherical components of a Gaussian mixture model. This is
also a limiting case of a specific Information Bottleneck formulation (e.g. Tishby

does not restrict the covariance space. Non-restrictiveness of the parameterization of p(yj)
trivially follows from the range of (5.9).
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et al. (1999), Slonim (2002)) for the model x ← i → y, where i = 1, . . . ,M is
the training pattern indicator, x : i → x is a one-to-one deterministic “pattern-
extracting” mapping, and p(y|i) = p(y|x(i)) is the exact posterior of a flat spherical
Gaussian mixture model (Still et al. (2004), Still and Bialek (2004)). We may
therefore conclude that while likelihood maximization, information bottleneck,
and the variational IM define very different methodologies for training different
graphical models, their point of intersection for the limiting case of Gaussian
mixture models in the noiseless limits is the k-means algorithm.

5.2.2 Information Maximization for Clustering with Encoder

Models

We will now discuss a more intuitive approach to information-theoretic cluster-

ing by considering encoder models MI
def
= p̃(x)p(y|x), where {x} is the set of

data patterns, and {y} is the set of the corresponding (and generally unknown)
cluster labels. As in the standard approaches to information maximization in
intrinsically tractable channels, we will maximize the exact mutual information
with respect to parameters of the explicitly parameterized encoder p(y|x). In
many practical clustering applications, we will have the flexibility of choosing
the encoder’s parameterization. For clustering, we may be particularly interested
in encoders which favour consistent cluster allocations to locally smooth neigh-
borhoods of the training patterns (by this we mean that data patterns which
are close to each other according to some distance measure would need to be
clustered similarly). As discussed in Chapter 3, one of the fundamental advan-
tages of the information-maximization principle for the encoder models MI is the
simplicity of imposing such smoothness constraints on the encoder distribution;
moreover, by aiming to maximize the capacity of the resulting channels, we ob-
tain a proper information-theoretic framework for performing fully unsupervised
training. Another potential advantage of clustering with encoder (rather than
generative) models is the observation that we do not need to specify the data-
generating process to be able to cluster the data properly. Indeed, generative
approaches suffer from the fact that p(x|y) needs to be normalized in x, which in
high dimensions restricts the class of the generative models to mixtures of sim-
ple distributions (such as Gaussians). Usually data will lie on low dimensional
curved manifolds embedded in the high dimensional x-space. If we are restricted
to using mixtures of Gaussians to model this curved manifold, typically a very
large number of mixture components will be required. No such restrictions apply
in the information maximization case, so that the mappings p(y|x) may be very
complex, subject only to sensible local constraints (Agakov and Barber (2005b)).

Before discussing applications of the IM to specific nonlinear channels, it is
important to outline fundamental differences of the suggested formulation from
the existing approaches to information-theoretic clustering and feature extrac-
tion. We stress that our approach to clustering is a special case of the gen-
eral formulation of the information-maximization problem for a specific choice of
the code variables. In particular, our goal here is to obtain informative codes
(cluster labels) by optimizing the information content I(x, y) in the undercom-
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plete stochastic channel. While the information-maximizing framework seems
to be somewhat related to the existing information-theoretic approaches to fea-
ture extraction (Principe et al. (2000), Torkkola and Campbell (2000), Gokcay
and Principe (2002)), it is in many ways fundamentally different. Specifically,
these methods presume a complete observability of the data patterns and the
corresponding class labels {x(i), y(i)|i = 1, . . . ,M}, and suggest to maximize the
information content I(z, y) between the known cluster labels {y} and the hidden
transformations {z} of the training patterns {x}. Since the resulting mutual in-
formation is generally computationally intractable, it is typically approximated
by a somewhat heuristic “information potential”, which may be related to the

quadratic Renyi entropy HR(z, y)
def
= − log〈p(z, y)〉p(z,y). The joint distribution

p(z, y) is usually evaluated by applying Parzen density estimation techniques (see
e.g. Principe et al. (1998), Fisher and Principe (1998), Torkkola (2000)). Ef-
fectively, these methods may be interpreted as a way of training discriminative
models x → z → y by maximizing an approximation of I(z, y), which is computa-
tionally and conceptually different from the information-maximizing formulation
for encoder models x → y.

Other clustering techniques, which make a recourse to information theory, pre-
sume partial observability of the cluster labels (Szummer and Jaakkola (2002),
Corduneanu and Jaakkola (2003)). The key idea there is to learn the encoder
distribution p(y|x) by maximizing the conditional likelihood for the labeled part
of the training set {x(i), y(i)|i = 1, . . . , L}, penalized by the mutual information
I(x, y) for all (labeled and unlabeled) source patterns {x(i)|i = 1, . . . ,M}, where
M ≥ L. Clearly, this framework is also different from maximizing mutual in-
formation in encoder models; specifically, when applied to clustering of the unla-
beled data (i.e. L = 0), it would result in minimization of the information content
between the clusters and the patterns. Of course, this would give rise to indepen-
dent cluster assignments p(y|x) = p(y) for unconstrained non-parametric settings.
Other methods applied in the vaguely related regularized contexts (Tishby et al.
(1999), Slonim et al. (2001), Chechik and Tishby (2002), Dhillon et al. (2002)) are
also different from the information-maximizing framework in terms of the con-
ceptual definitions of optimality, channel definitions, observability of the modeled
domain, and availability of the additional observable variables of relevance.

Our motivation here is to explore whether optimization of the exact mutual
information for nonlinear channels may give rise to an anthropomorphically sen-
sible clustering technique. As a simple choice of the encoder for the information-
theoretic clustering method, we could trivially consider

p(yj|x
(i)) ∝ exp{−‖x(i) − wj‖

2/sj + bj}, (5.12)

where the cluster centers wj, the dispersions sj, and the biases bj are the encoder
parameters to be learned, and we use the notation yj to indicate that the code
variable y is in state j. Clearly, the encoder constraint (5.12) favors local smooth-
ness of the underlying clusters, so that patterns x lying close to specific centers
wj in the data space will tend to be clustered together. We may note that param-
eterization of the channel (5.12) has a strong relation to the posteriors expressed
from the isotropic Gaussian mixture models. Indeed, for the specific setting of
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bj = log p(yj) − (|x|/2) log sj, expression (5.12) would reduce to the channel de-
fined by the posterior of the corresponding Gaussian mixture (see Section 5.2.1).
In general, for encoder distributions parameterized by (5.12) we will assume that

b
def
= {bj} ∈ R

|y| is an unconstrained free parameter, and the optimized objective

is the exact mutual information rather than the specific bound Î(x, y) discussed in
Section 5.2.1. In principle, we could consider other choices of the encoder distri-
butions; however (5.12) will prove to be particularly convenient for the kernelized
representations which we will introduce at a later stage.

As the dimensionality of the code space |y| in clustering problems is usually
relatively small, the summations over the |y| states may be performed exactly,
and we may proceed by optimizing the exact mutual information I(x, y). In our
case it may be expressed analytically as

I(x, y) ∝
M∑

m=1

|y|
∑

j=1

p(yj|x
(m)) log p(yj|x

(m)) −
M∑

k=1

|y|
∑

j=1

p(yj|x
(k)) log

1

M

M∑

l=1

p(yj|x
(l)).

(5.13)
Clearly, I(x, y) may be computed in O(M2|y|).

5.2.2.1 Learning Optimal Parameters

Objective (5.13) needs to be optimized with respect to the encoder parameters
(wj, sj, and bj for the channels defined by (5.12)). By computing the functional
derivatives of (5.13) for the encoders p(y|x), we get

∂I(x, y)

∂p(yj|x(m))
=

1

M
log

p(yj|x
(m))

p(yj)
. (5.14)

This implies

∂I(x, y)

∂θk

=
1

M

M∑

m=1

|y|
∑

j=1

log
p(yj|x

(m))

p(yj)

∂p(yj|x
(m))

∂θk

, (5.15)

where θk parameterizes p(yk|x) (again, by construction we have presumed that
p(y|x) lies in the convex space of the conditional distributions). Note that due to
the normalization, the parameters θk would occur in the normalizing constants
of p(yj|x) for all j = 1, . . . , |y|, which leads to

∂p(yj|x
(m))

∂θk

= −p(yj|x
(m))




∂fj(x

(m))

∂θk

−

|y|
∑

l=1

p(yl|x
(m))

∂fl(x
(m))

∂θk



 . (5.16)

Here we assumed that p(yj|x
(m)) ∝ exp{−fj(x

(m))} with the potentials defined as

fj
def
= ‖x(i) − wj‖

2/sj − bj. Now we can easily express the gradients of the exact
mutual information I(x, y) for the means wj and the isotropic variances sj as

∂I(x, y)

∂wj

=
1

M

M∑

m=1

p(yj|x
(m))

(x(m) − wj)

sj

α
(m)
j , (5.17)

∂I(x, y)

∂sj

=
1

M

M∑

m=1

p(yj|x
(m))

‖x(m) − wj‖
2

2s2
j

α
(m)
j , (5.18)
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where α
(m)
j is again the increment of the specific Kullback-Leibler term

α
(m)
j

def
= αj(x

(m))
def
= log

p(yj|x
(m))

p(yj)
− KL

(
p(y|x(m))‖〈p(y|x)〉p̃(x)

)
. (5.19)

Note that in contrast to the weighting coefficients (5.6) of the IM training of
Gaussian mixture models, the KL divergence in (5.19) is computed between the
posterior p(y|x) and their empirical (rather than model-based) average. Analo-
gously, we get

∂I(x, y)

∂bj

=
1

M

M∑

m=1

p(yj|x
(m))α

(m)
j . (5.20)

It is easy to see that apart from the variable factors, the fixed point updates
(5.17) and (5.18) are identical to (5.4) and (5.5) with the assumed isotropic co-
variances. A simple construction constraint ensuring that sj > 0 may be given

by sj
def
= exp{s̃j} where s̃j ∈ R. For this case, we may re-express the gradients

for the variances as
∂I(x, y)/∂s̃j = sj∂I(x, y)/∂sj. (5.21)

Expressions (5.17) – (5.21) could then be used by a numerical optimization pro-
cedure performing an ascent on I(x, y) for wj, s̃j, and bj, where j = 1, . . . , |y|, as
discussed in Agakov and Barber (2005c).

5.2.3 Information Maximization for Clustering with Kernelized

Encoder Models

We will now extend (5.12) by considering kernelized (Aizerman et al. (1964),
Boser et al. (1992)) parameterizations of encoders p(yj|x). Let us assume that
the source patterns x(i), x(j) should have a high probability of being assigned to
the same cluster, if they lie close to a specific cluster center in some feature space.
A reasonable choice of the encoder distribution for this case is given by

p(yj|x
(i)) ∝ {−‖φ(x(i)) − wj‖

2/sj + bj}, (5.22)

where φ(x(i)) ∈ R
|φ| is the feature vector corresponding to the source pattern x(i),

and wj ∈ R
|φ| is the (unknown) cluster center in the feature space. Typically, we

will presume intractability of explicit computations in feature spaces (which may
occur, for example, when |φ| → ∞). We will also presume that it is impossible
to store vectors in the feature space, which enforces constraints on the encoder
parameters wj ∈ R

|φ|.
Note that since each cluster center wi in the feature space R

|φ| has the same
dimensionality as the projected source patterns φ(x(i)), it is representable in the
basis of the projections as

wj =
M∑

m=1

αmjφ(x(m)) + w⊥
j , (5.23)
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where w̃⊥
i ∈ R

|φ| is orthogonal to the span of φ(x1), . . . ,φ(xM), and {αmj} is a
set of coefficients (here j and m index |y| codes and M patterns respectively).
Then we may transform the encoder distribution (5.22) to

p(yj|x
(m)) ∝ exp

{
−

(
Kmm − 2kT (x(m))aj + aT

j Kaj + cj

)
/sj

}

def
= exp{−fj(x

(m))}, (5.24)

where k(x(m)) corresponds to the mth column (or row) of the Gram matrix K
def
=

{Kij}
def
= {φ(x(i))T φ(x(j))} ∈ R

M×M , aj ∈ R
M is the jth column of the matrix of

the coefficients A
def
= {amj} ∈ R

M×|y|, and cj = (w⊥
j )T w⊥

j − sjbj. Without loss of

generality, we may assume that c = {cj} ∈ R
|y| is a free unconstrained parameter,

as the assumption does not limit the parameter’s domain. Also, by analogy with
the previous case (see expressions (5.12), (5.21)), we will ensure positivity of the
dispersions sj by assuming sj = exp{s̃j}. Learning in the encoder model may
now be seen as unconstrained optimization of I(x, y) for the encoder parameters.

5.2.3.1 Learning Optimal Parameters

It is easy to see that for a fixed and known Gram matrix K ∈ R
M×M , the con-

sidered construction (5.23) helps us to avoid computations in high-dimensional
feature spaces R

|φ|. Indeed, if we know K, the encoder (5.24) is a function of the

coefficients A
def
= {ajm} ∈ R

M×|y|, c ∈ R
|y|, and sj for j = 1, . . . , |y|, i.e. evalua-

tion of the encoder potential fj(x
(m)) does not require explicit computations in

high-dimensional feature spaces.
The exact mutual information (5.13) should be optimized with respect to the

log-dispersions s̃j ≡ log(sj), biases cj, and coordinates A in the space spanned
by the feature vectors {φ(x(i))|i = 1, . . . ,M}. From expressions (5.15) and (5.24)
we get

∂I(x, y)

∂aj

=
1

sj

〈p(yj|x) (k(x) − Kaj) αj(x)〉p̃(x) ∈ R
M , (5.25)

∂I(x, y)

∂s̃j

=
1

2sj

〈p(yj|x)fj(x)αj(x)〉p̃(x) . (5.26)

Also, by analogy with (5.20) we obtain

∂I(x, y)/∂cj = 〈αj(x)〉p̃(x), (5.27)

where the coefficients αj(x) are given by (5.19). For a known Gram matrix K, the
gradients ∂I/∂aj, ∂I/∂s̃j, and ∂I/∂cj given by expressions (5.25) – (5.27) may
be used for numerical optimization of the model parameters (e.g. Luenberger
(1973), Bertsekas (1999)).

Note that so far we have assumed that the Gram matrix K ∈ R
M×M is fixed

and known. Clearly, in general it needs to be recomputed for each new dataset.
Moreover, in addition to learning the feature space coordinates A, we could poten-
tially consider learning optimal features, which would generally lead to changes
in the matrices of scalar products. Since we presume that explicit computations
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in R
|φ| are expensive, we cannot compute the Gram matrix by trivially applying

its definition K = {φ(xi)
T φ(xj)}. Instead, we may interpret scalar products in

feature spaces as kernel functions

φ(x(i))T φ(x(j)) = KΘ(x(i), x(j);Θ), ∀x(i), x(j) ∈ Rx, (5.28)

where KΘ : Rx×Rx → R satisfies Mercer’s kernel properties (symmetry and non-
negative definiteness, see e.g. Mercer (1909), Courant and Hilbert (1953), Vapnik
(1998), Smola (1998), Cristianini and Shawe-Taylor (2000)). We may therefore
evaluate scalar products in feature spaces Kij = KΘ(x(i), x(j)) by performing
computations in the data space R

|x|; the projections into R
|φ| will in this case

be implied.
A number of nonlinear extensions of common models (applicable in a variety

of contexts: from unsupervised dimensionality reduction to supervised classi-
fication) typically consider specific kernel functions with fixed parameters (e.g.
see a review in Smola (1998), Cristianini and Shawe-Taylor (2000), Scholkopf and
Smola (2002)). This raises a natural question of finding optimal settings of kernel
parameters, which would implicitly correspond to finding optimal nonlinearities
for constrained function spaces. The problem of learning optimal kernels may be
conveniently addressed in the (supervised) context of probabilistic classification
or regression, with Gaussian process priors over regression functions (Williams
and Rasmussen (1996), Williams (1997), Williams (1998)) or the functions’ ar-
guments (Barber and Williams (1997), Williams and Barber (1998), Gibbs and
MacKay (2000)). Optimal kernel parameters for these cases are typically ob-
tained by maximizing the likelihoods with respect to parameters of covariance
functions. Generally, the likelihoods will be computed for a set of labeled pat-
terns. An important difference of our information-theoretic formulation is that
it offers a convenient and simple way to learn parameters of kernel functions KΘ

in the unsupervised context. (Additionally, in contrast to Bishop, Svensen and
Williams (1998a), Bishop, Svensen and Williams (1998b), we do not need to im-
pose explicit constraints on the code space representations). For the considered
channel definitions (5.22), learning the kernel function parameters is particularly
computationally convenient; moreover, choosing appropriate constraints on the
kernel matrices in this case is generally less complicated than for some other
communication channels (cf Agakov and Barber (2004c)).

5.2.3.2 Learning Optimal Kernels

We can apply our information-maximizing framework to learning of optimal ker-
nel parameters. Indeed, from (5.13) and (5.15) we can derive the gradients of the
exact mutual information with respect to the parameters Θ of the kernel function
KΘ. After some algebraic manipulations, we get

∂I(x, y)

∂Θ
=

1

M

M∑

m=1

KL(p(y|x(m))‖p(y))

|y|
∑

k=1

∂fk(x
(m))

∂Θ
p(yk|x

(m)) −

1

M

M∑

m=1

|y|
∑

j=1

∂fj(x
(m))

∂Θ
p(yj|x

(m)) log
p(yj|x

(m))

p(yj)
, (5.29)
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where fk(x
(m)) is given by (5.24). Note that the computational complexity of

computing the updates for Θ is O(M |y|2), where M is the number of training
patterns and |y| is the number of clusters. It is easy to see that generally (5.29)
does not require further approximations. Also, we may note that neither com-
putation of the objective (5.13), nor computation of its gradients (5.25) – (5.27),
(5.29) requires inversion of the Gram matrix K ∈ R

M×M .
In the special case of the radial basis function (RBF) kernels

Kβ(x(i), x(j)) = exp{−β‖x(i) − x(j)‖2}, (5.30)

the gradients of the encoder potentials are given by

∂fj(x
(m))

∂β
=

1

sj

(

aT
j K̃aj − 2k̃T (x(m))aj

)

, (5.31)

where K̃
def
= {K̃ij}

def
= K(x(i), x(j))(1 − δ(x(i) − x(j))), and δ is the Kronecker delta.

By substituting (5.31) into the general expression (5.29), we obtain the gradient of
the mutual information with respect to the RBF kernel parameters (Agakov and
Barber (2005b)). As usual, the kernel parameter may be learned by performing
a numerical ascent on the objective (5.13). Similarly, we may learn continuous
parameters of other kernel functions, or use the mutual information (5.13) as a
criterion for kernel comparison.

The discussed framework suggests a proper information-theoretic approach to
clustering by projecting the data to potentially high-dimensional feature spaces.
Importantly, we stress that in contrast to other techniques performing clustering
in feature spaces (such as the kernelized k-means, e.g. Dhillon et al. (2004), Wang
et al. (2004)), the information-maximizing framework suggests a principled way
of learning optimal kernels. Moreover, the proper information-theoretic interpre-
tation may facilitate extensions of the method to richer channel distributions.

5.3 Nonlinear Gaussian Channels

In Section 5.2.3 we assumed that the code space was low-dimensional and dis-
crete (i.e. y ∈ {y1, . . . , y|y|}), which made it possible to optimize the exact mutual
information I(x, y) analytically. For that case, we considered several kinds of non-
linear Gaussian encoders (see (5.2), (5.12), (5.22)) and outlined the corresponding
IM learning rules. We also showed that if the nonlinear channel was defined by
the exact posterior of a Gaussian mixture model, the limiting noiseless case of the
bound (5.3) gave rise to the well-known k-means clustering algorithm. Here we
consider a different family of communication channels, where the code space is
high-dimensional and continuous (i.e. y ∈ R

|y|). Specifically, we focus on applying
the variational information-maximizing framework to high-dimensional nonlinear
channels x → y with the independent isotropic Gaussian noise. The encoder dis-
tribution we consider is given by p(y|x) ∼ Ny(Wφ(x), s2I|y|), where W ∈ R

|y|×|x|.
By analogy with Section 5.2.3, we presume that explicit computations in R

|φ|

are expensive, and work with the kernelized encoders instead. For this case, we
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consider optimizing the generic bound (2.2) for several choices of the variational
decoder distributions q(x|y).

Our objective here is to outline several important properties of the IM ap-
proach for Gaussian channels and tractable decoding distributions. Specifically,
as the first obvious choice of q(x|y), we consider using linear Gaussian decoders,
which simplifies computations of the bound Ĩ(x, y) and facilitates the analysis of
optimal solutions for encoder parameters. We show that for the case of isotropic
channel noise, nothing is gained by using nonlinear encoders and linear decoders
in the context of variational information maximization. This result extends the
work of Bourlard and Kamp (1988) and Bourlard (2000) to stochastic communi-
cation channels with arguably more general choices of encoding nonlinearities.

Then we consider variational information maximization for the case of nonlin-
ear Gaussian variational distributions. Generally, such choices of q(x|y) may sig-
nificantly increase the complexity of computing the generic lower bound Ĩ(x, y),
which motivates further reformulations of the variational procedure. We find
that the generic lower bound Ĩ(x, y) may indeed be formally modified to ensure
tractable computations, which leads to kernel PCA (Schoelkopf et al. (1998)) as
the optimal solution for encoder weights W ∈ R

|y|×|x|. By analogy with a simpler
case of discrete nonlinear channels (see Section 5.2.3), the IM suggests a formal
procedure for learning kernel parameters. However, we point out that in order to
avoid degenerate solutions for parameters of the encoder model, it may generally
be important to impose constraints on the Gram matrix K ∈ R

M×M , or carefully
choose the feature-to-data decoding mappings.

Finally, we outline a simple relation of our framework to the recent work on
Gaussian Process Latent Variable Models (Lawrence (2003)), which may be in-
terpreted as the variational information-maximization procedure in the noiseless
limit of a nonlinear channel. The presentation in this section summarizes the
obtained theoretical results. For their derivations and extended discussions we
refer the reader to Appendix C.

5.3.1 Analytic Properties of IM Solutions

As discussed in Section 1.4, optimization of the exact mutual information for
high-dimensional code spaces is generally computationally intractable. Here we
describe optimization of the bound

I(x, y) ≥ Ĩ(x, y)
def
= H(x) + 〈log q(x|y)〉p(x)p(y|x)

for the case of a nonlinear Gaussian encoder p(y|x) ∼ Ny(Wφ(x), s2I|y|). Note
that for the data patterns {x(m)|m = 1, . . . ,M}, the set of encodings {y(m)} is
given by a noisy linear projection from the (potentially high-dimensional) feature
space {φ(x(m))}. We also assume that |y| ≤ |x| ≪ |φ| and |x| ≤ M , so that y is a
compressed representation of x, and the number of training points is sufficient to
ensure invertibility of the sample covariance (for linearly independent patterns).
We will focus primarily on the discussion of the IM framework for the cases when
variational decoders q(x|y) are linear and nonlinear Gaussians.
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5.3.1.1 Linear Gaussian Decoders

Let us assume that p(y|x) ∼ Ny(Wφ(x), s2I|y|), and the variational decoder is a
linear Gaussian q(x|y) ∼ Nx(Uy, σ2I|x|). By analogy with (5.23), we note that the
encoder weights are representable in the basis of feature vectors {φ(x(i))T |i =
1, . . . ,M} as

W = AFT + W⊥ ∈ R
|y|×|φ|, F

def
=

[
φ(x(1)), . . . , φ(x(M))

]
∈ R

|φ|×M , (5.32)

where A = {αij} ∈ R
|y|×M is the matrix of coefficients, and the rows of W⊥ are the

corresponding orthogonal compliments (see expression (5.23)). Also, by analogy
with Section 5.2.3 we may define the Gram matrix of scalar products in R

|φ| as

K
def
= {Kij}

def
= {φ(x(i))T φ(x(j))} = FT F ∈ R

M×M . (5.33)

After some straight-forward algebraic manipulations (see Appendix C.2), we may
express the bound (2.2) on I(x, y) as

Ĩ(x, y) ∝
1

Mσ2
tr

{
UABT

}
−

s2

σ2
tr

{
UT U

}
−

1

2Mσ2
tr

{
UT UAK2AT

}
−

1

2σ2
tr {S} + c,

(5.34)

where S
def
= 〈xxT 〉 =

∑

m x(m)(x(m))T /M ∈ R
|x|×|x| is the sample covariance of the

centered data, B
def
=

∑M
m=1 x(m)k(x(m))T ∈ R

|x|×M , k(x(m)) ∈ R
M×1 is the mth

column of the Gram matrix, and c is an irrelevant constant. If K ∈ R
M×M is

fixed, the objective (5.34) needs to be optimized for the encoder coefficients and
decoder weights.

By optimizing the bound (5.34) with respect to the encoder coefficients A ∈
R

|y|×M and plugging the optimal values back into (5.34), we may express the
objective Ĩ(x, y) as a function of the decoder weights U ∈ R

|x|×|y|. Interestingly,
in our case this leads to

Ĩ(x, y) =
1

2σ2
tr

{
U(UT U)−1UT S

}
−

s2

2σ2
tr

{
UUT

}
−

1

2σ2
tr {S} + c, (5.35)

which is exactly the expression for the optimal bound for linear Gaussian com-
munication channels (see Appendix C.1 and expression (C.7)). The result is
derived in the context of variational information maximization for a stochastic
channel x → y, and it holds independently of the specific form of the nonlinearity
φ(x). Indeed, we have made no assumptions about the mappings to the feature
space. Hence, we reach an important conclusion: in the considered variational
framework, nothing is gained by using a nonlinear encoder and a linear Gaussian
variational decoder for isotropic channel noise. This extends the related work of
Bourlard and Kamp (1988) and Bourlard (2000), who showed that for noiseless
1-layer autoencoders, there are no gains of using specific nonlinearities4.

By analogy with Appendix C.1 we may note that the optimal left singular
vectors of U ∈ R

|x|×|y| span the subspace defined by the |y| principal components

4To show this, Bourlard (2000) considers noiseless autoencoders with the encoding functions
approximately linear around x = 0, i.e. φ(x) ≈ a0 + a1x.
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of S. Moreover, for both linear and nonlinear Gaussian encoders, the bound (5.35)
is maximized when the weights are unconstrained (see the discussion in Appendix
C.1). By imposing norm constraints on U ∈ R

|x|×|y|, both channels result in the
same optimization surface for the decoder weights independently of the choice of
nonlinearity.

The result suggests that in order to improve the power of the method, we
need to consider both nonlinear encoders and decoders. However, from (2.2) it
is clear that in the stochastic context, the naive approach of using a nonlinear
decoder will typically result in intractable averages over y in the expression for
the variational bound Ĩ(x, y). In order to avoid the computational problems,
we derive a modified bound on the mutual information by considering further
relaxations of the generic bound and performing decoding in the feature space.

5.3.1.2 Nonlinear Gaussian Decoders

The considered nonlinear Gaussian channel may be represented by the Markov
chain x → f → y, where f ∈ R

|φ| and p(f|x) ∼ δ(f − φ(x)), p(y|f) ∼ Ny(Wf,Σy).
Intuitively, since projections to the feature space are deterministic, the codes y

are as predictable from the feature vectors f
def
= φ(x) ∈ R

|φ| as they are from the
source variables x (see Appendix C.3 and proposition C.1). Then the bound on
I(x, y) may be expressed as

I(x, y) = I(f, y) ≥ Ĩ(f, y), where Ĩ(f, y)
def
= 〈log q(f|y)〉p̃(x)p(f|x)p(y|f) + H(f). (5.36)

Evaluation of the bound (5.36) is complicated by the need of computing the
entropy of the features H(f). Despite the fact that the mapping to the feature
space is deterministic, we have assumed that we do not generally know explicit
feature space representations of the training patterns, i.e. numeric approxima-
tions due to Brunel and Nadal (1998), Shriki et al. (2002), Corduneanu and
Jaakkola (2003) are not directly applicable. Moreover, even if explicit computa-
tions in the feature space were possible, the existing numerical methods would
not generally retain a proper bound on I(x, y), i.e. other ways of handling the
intractability may need to be considered.

In Appendix C.3.1 and C.3.2 we discuss several ways of addressing the problem
of evaluating the feature space entropy in the context of the optimization problem.
As one of such methods, we suggest optimizing a proper variational relaxation of
(5.36) given by

I(x, y) ≥ Ĩ(x, y) ≥ 〈log q(f|y)〉p̃(x)p(f|x)p(y|f) + 〈log q(x|f)〉p̃(x)p(f|x) + c, (5.37)

where c is an irrelevant constant (note that it corresponds to a sequential appli-
cation of the generic bound for the chain x → f → y). As in the conventional
applications of the variational IM algorithm (see Section 2.1.2), we will be opti-
mizing (5.37) with respect to parameters of the encoder p(y|f), the feature decoder
q(f|y), and the data decoder q(x|f). Note that objective (5.37) is a proper bound
on I(x, y) independently of the specific parameterization of the encoder and the
variational decoder distributions.
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By assuming that the feature space decoder is an isotropic linear Gaussian
q(f|y) ∼ Nf(Uy, σ2

f I) and considering kernelized representations of p(y|f) and
q(f|y), it is easy to see that the optimal encoder and decoder weights WT , U ∈
R

|φ|×|y| span the principal eigen-subspace of

SF =
1

M

M∑

i=1

φ(x(i))φ(x(i))T . (5.38)

Hence, for a fixed kernel function KΘ and data decoder q(x|f) of the considered
nonlinear Gaussian channel, the variational lower bound Ĩ(x, y) is maximized by
the kernel PCA solutions for encoder and feature decoder weights (see Appendix
C.3.3 for derivations and discussions of non-centered representations). As ex-
pected, we obtain the linear PCA for the special case of linear mappings φ(x) ≡ x.

A few further comments about the objective (5.37) are in order. First of
all, we note that analytical properties of the data decoder depend on the specific
parameterization of q(x|f). Since integration over x and f reduces to evaluations
of the empirical averages, the average 〈log q(x|f)〉p(x,f) may typically be easily
computed (provided that q(x|f) is appropriately kernelized, so that no explicit
computations in the feature space are performed). Having specified the data
decoder, we may optimize (5.37) to learn parameters of the kernel function KΘ,
which parameterizes scalar products in R

|φ|. While this strategy may indeed lead
to nontrivial optimization surfaces for kernel parameters, our current experience
shows that the results may be strongly influenced by the specific definitions of the
feature-to-data mappings5. Nevertheless, while any practical application of the
framework may require a careful consideration of appropriate choices for q(x|f)
and KΘ, the considered objective (5.2.3) indeed defines a theoretically rigorous
tractable way of optimizing the bound on the mutual information in large scale
nonlinear Gaussian channels.

5.3.1.3 Noiseless Channels and Gaussian Process Latent Variable Models

The discussed variational framework of maximizing lower bounds on I(x, y) in
nonlinear Gaussian channels is particularly useful in situations when the chan-
nel x → y is intrinsically noisy. However, in many practical situations when the
stochasticity of p(y|x) is not a necessary modeling requirement, simplifications
of the IM approach may be possible. One practical example of such situation
is an application of the variational information-maximizing framework to non-
linear dimensionality reduction, where the code space {y} is continuous, and the
encoder is deterministic, i.e. p(y|x) ∼ δ. Interestingly, for a specific parameteriza-
tion of the variational decoder distribution, this noiseless limit of the variational
information-maximizing framework is closely related to the recently introduced
(Lawrence (2003)) Gaussian Process Latent Variable Models (GPLVMs).

5Intuitively, it is clear that unless the feature vectors are constrained, the bound Ĩ(x, y) may
diverge due to the contributions of the feature decoder (see expression (5.37) and Appendix
C.3.5). The situation is analogous to the case of linear Gaussian channels, where the divergent
weights lead to the diminishing noise effects (see e.g. expression (C.8)), which may generally
result in the divergence of I(x, y).
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In order to show this, let us consider a conventional noiseless autoencoder
x 7→ y → x̃, with p(y|x) ∼ δ(y − y(x)) and the empirical distribution p̃(x, x̃) ∝
∑

m δ(x−x(m))δ(x−x̃). For i.i.d. patterns the exact conditional likelihood training
in such models reduces to maximizing

Lx̃|x =
〈
log〈q(x̃|y)〉p(y|x)

〉

p̃(x,x̃)
= 〈log q(x|y)〉p(y|x)p̃(x), (5.39)

where p(y|x) and q(x|y) define the encoding and decoding mappings respectively

(also see lemma 3.1 and proposition 3.4). If {x}
def
= {x(m)|m = 1, . . . ,M} defines

the dataset of training patterns with the corresponding codes {y}
def
= {y(x(m))|m =

1, . . . ,M}, the objective (5.39) may be transformed to

Lx̃|x = 〈log q̂({x}|{y})〉p̂({y}|{x}) . (5.40)

Here the decoder q̂({x}|{y}) and the encoder

p̂({y}|{x}) =
M∏

m=1

δ
(
y(m) − y(x(m))

)
(5.41)

are defined for the whole set of the observed patterns {x} and their deterministic
projections {y}.

We can now see that if the decoding mapping is defined as

q̂({x}|{y}) ∝

|x|
∏

i=1

exp

{

−
1

2

(
x̃(i)

)T
K−1x̃(i)

}

= exp

{

−
1

2
tr

{
XK−1XT

}
}

, (5.42)

the conditional likelihood (5.40) reduces to Neil Lawrence’s Gaussian Process
Latent Variable Models, optimizing the objective

Lx̃|x = −
1

2
tr

{
XK−1XT

}
−

|x|

2
log |K| + const. (5.43)

In (5.42) we assumed that K
def
= {KΘ(y(i), y(j))} ∈ R

M×M is the symmetric

positive-semidefinite covariance defined by the covariance function KΘ, and
(
x̃(i)

)T
∈

R
1×M is the ith row of the data matrix X = {x(1), . . . , x(M)} ∈ R

|x|×M . In this for-
mulation learning corresponds to optimizing the conditional likelihood (5.40) for
the encoded representations {y(i)|i = 1, . . . ,M} and parameters of the covariance
function KΘ.

On the other hand, it is easy to see that the objective (5.40) may be in-
terpreted as the variational bound on I({x}, {y}) for the noiseless encoder
(5.41) and the variational decoder q̂({x}|{y}) given by expression (5.42). Effec-
tively, this interpretation offers an alternative, information-theoretic justification
of GPLVMs for noiseless encoder models. Note that in contrast to Lawrence
(2003), our derivation of (5.40) is independent of the specific assumptions about
the model – the GPLVM may be viewed as a special case of the variational
information-maximizing framework for noiseless channels with the specific choice
of the variational decoder.
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5.4 Demonstrations

Here we demonstrate experimental results of maximizing the information content
for the discussed discrete nonlinear channels. We will focus specifically on the
discussion of information-theoretic clustering (see Section 5.2.1 and Section 5.2.2).
First we consider clustering by maximizing the alternative objective function
Î(x, y) for training Gaussian mixture models (see expression (5.1)). As we showed
in proposition 3.1, this objective corresponds to a generic lower bound on I(x, y)
for the encoder model MI = p̃(y|x)p̃(x), where the encoder distribution is given
by the exact posterior of a Gaussian mixture model ML = p(y)p(x|y), i.e.

p̃(y|x) ∝ p(y)p(x|y), y ∈ {y1, . . . , y|y|}, p(x|yj) ∼ Nx(µj,Σj).

For this case we will compare maximization of the bound Î(x, y) with maximiza-
tion of the exact likelihood for Gaussian mixtures, and show that the variational
approach may indeed favor more uniform cluster assignments. As the method may
be used for training both encoder and generative models (due to the specifics of
the channel definition), we will refer to it as IM for Gaussian mixtures.

Then we will apply the information-theoretic clustering method to several
intrinsically non-Gaussian datasets. For these tasks, we consider the specific
definition of the encoder distribution (5.12) and its kernelized extension (5.24)
described in Sections 5.2.2, 5.2.3. We compare both approaches to Gaussian
mixture, k-means, and the kernelized k-means clustering, and show that for the
considered datasets our method may indeed lead to visible anthropomorphic im-
provements over the common clustering techniques. Interestingly, we show that
by learning parameters of kernel functions (see expression (5.31)), we may indeed
obtain better visualizations of cluster assignments.

5.4.1 IM for Gaussian Mixture Models

5.4.1.1 L- and Î(x, y)-maximization for Gaussian mixtures

Figure 5.1 shows typical soft cluster allocations produced by a mixture model
trained by maximizing the exact likelihood (left) and the bound Î(x, y) on the
mutual information (middle). The dataset consisted of M = 150 training pat-
terns, generated at uniform random from the convex area bounded by a flat
triangle (for |x| = 2). The number of mixture components was |y| = 3. The
initial mixture coefficients were set as p0(yj) = 1/|y|, the initial covariances were
set to be spherical with Σj = I|x|, and the components’ means were initialized by
applying the k-means algorithm. Then the model was trained until convergence
by applying the two methods (with the learning rate η = 0.01 for the IM). Not
surprisingly, maximization of the likelihood for the mixture model often resulted
in near-singular components’ covariances, which led to locally constrained cluster
segments (Figure 5.1 (left)). On the other hand, under the identical initializa-
tions, the IM on Î(x, y) typically led to more uniform cluster allocations with
non-degenerate covariance matrices (Figure 5.1 (middle)).

Figure 5.1 (right) shows the means and the variances for the proportions of
source patterns allocated to each of the |y| clusters for 10 runs of the EM and
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Figure 5.1: L- and Î- maximization for a three-component Gaussian mixture (|y| = 3).
Left: clustering with the EM algorithm on L (the squares show the cluster centers);
Middle: clustering with the IM on Î(x, y); Right: Proportion of the testing points
assigned to each of |y| = 3 clusters under T = 10 different runs of the optimization
procedure (light gray bars indicate the variance). The exact mutual information
computed by the EM- and IM-trained models was IL(x, y) ≈ 0.75 and II(x, y) ≈ 1.00
respectively; the corresponding log-likelihoods are LL ≈ −4.74 and LI ≈ −4.99.

IM algorithms, where the training set was re-sampled from the underlying distri-
bution at each run. For both EM and IM-trained6 models, the cluster allocation
y(x) for a pattern x was given by y(x) = arg maxy p(y|x). Again, the results
suggest that on average the models trained by the IM typically result in more
uniform class assignments and smaller variances on cluster sizes. This empirically
confirms the informal argument of section 3.2.1 that maximization of the bound
Î(x, y) may favor more spread-out representations in the latent space. We also
note that the likelihoods LL computed for EM-trained models typically exceed
the likelihoods LI of Gaussian mixture models trained by maximizing the bound
Î(x, y) (for the illustrated case we had LL ≈ −4.74 and LI ≈ −4.99). At the
same time, the exact mutual information computed for a conventionally trained
mixture was typically inferior to that of an IM-trained mixture (IL ≈ 0.7467 vs.
II ≈ 0.9950 for the considered case). Additionally, we see that cluster alloca-
tions produced by both training procedures suggest that the models with higher
likelihoods do not necessarily lead to better representations of the underlying dis-
tribution, which once again illustrates the conceptual problems of maximizing the
likelihoods of under-constrained models for learning informative representations
of the data.

5.4.1.2 Samples from the Trained Models

As mentioned in Section 5.2.1, our motivation for maximizing the bound Î(x, y)
was to produce informative latent variable representations y of the sources {x}.
Importantly, due to the specific parameterization of the encoder distribution,
the suggested framework of maximizing Î(x, y) could be used for training both
encoder and generative models. Our hope was that by maximizing the bound,

6Throughout the discussion in this section, we consider a special instance of the IM algorithm
for the specific definition of the encoder distribution (5.2).
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Figure 5.2: Samples from the Gaussian mixture model ML trained by the EM- and
IM-algorithms with |x| = 2, |y| = 3. The number of training patterns was M = 250.
Left: ML is trained by maximizing the likelihood L (resulting in IL(x, y) ≈ 0.654);
Right: ML is trained by maximizing the bound Î(x, y) (resulting in II(x, y) ≈ 0.911).
The ellipses show probability contours of the mixture components at 1/2 Mahalanobis
distance from the means µj for j = 1, . . . , |y|. The dashed lines indicate the boundary
of the convex region used to generate the underlying data.

the resulting generative models could potentially give rise to samples which were
somewhat more representative of the underlying data distribution. Figure 5.2
illustrates typical samples produced by the three-component Gaussian mixture
model trained by maximizing the likelihood (left) and the bound Î(x, y) (right).
As in the previous case, we assumed that |x| = 2, |y| = 3, and both models were
trained by starting from identical initializations at the flat component weights,
the initial means given by the k-means algorithm, and the initial covariances
set as Σj = I|x|. For illustration purposes, the training data was sampled from
the equiangular triangle, which is more difficult to model by a Gaussian mixture
distribution than the data shown on Figure 5.1 (top left) (for example, it is clear
that in the limiting case when one of the angles approaches zero, the data could
be trivially modeled by a single near-singular Gaussian).

We can see that in the considered case the Gaussian mixture model trained
by maximizing the likelihood leads to the components fitting local segments of
the dataset, with a wide flat component responsible for the remaining training
patterns (see Figure 5.2 (left)). While the resulting samples have a vague resem-
blance to the underlying equiangular area, they are arguably less representative
of the convex region than the samples produced by the IM-trained mixture (Fig-
ure 5.2 (right)). Note that the latter model is characterized by flatter spectra of
the components’ covariances (allowing more uniform space coverage within the
constrained area). Moreover, for the IM-trained model the components’ means
lie close to the corners of the underlying shape, which in this case preserves the
higher-level relations between the angles.
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Figure 5.3: Î(x, y)-maximization vs. K-means. Solid lines: eigenvectors of the covari-
ances Σj obtained by the IM. Dashed lines: eigenvectors of the sample covariances
ΣKM

j associated with each of the clusters obtained by the deterministic k-means
algorithm. All the eigenvectors are weighted by the corresponding eigenvalues and
centered at the components’ means (µj and µKM

j for the IM and k-means respec-

tively). The IM was initialized at µKM
j and ΣKM

j . The filled circles show the training
patterns which are classified differently by the k-means and the IM started at the
considered initialization.

5.4.1.3 Î(x, y)-maximization for Gaussian Mixtures and the K-means Algo-

rithm

In Section 5.2 we showed that in the limiting noiseless case of the decoder dis-
tributions p(x|y), optimization of the specific bound Î(x, y) for the considered
models reduces to the k-means algorithm. However, in the non-limiting cases,
maximization of the specific bound Î(x, y) for Gaussian mixtures is different from
the k-means, which may be seen analytically from (5.11) or illustrated by the
deviations of the IM from the k-means initializations. Figure 5.3 compares the
means and covariances µj,Σj of the IM-trained mixture model with the cluster

centers and the associated sample covariances µKM
j , ΣKM

j obtained by the k-
means algorithm. In the illustrated case, the IM-trained mixture was initialized
at µKM

j and ΣKM
j , with the initial mixing coefficients set according to the cluster

sizes. Figure 5.3 indicates the changes in the parameters and the resulting cluster
allocations. We see that for nonzero covariances, the IM diverges from the initial
settings, though for the considered dataset the cluster assignments produced by
the k-means and the IM are not very different.

Generally, the results of our experiments in this section have confirmed the
intuition that optimization of the bound Î(x, y) may result in more uniform cluster
assignments than the likelihood-based training of generative models. We also
showed that samples from the mixture models trained by maximizing the bound
may indeed be qualitatively more representable of the underlying distributions.
Extensions of this form of the IM to training other kinds of generative models may
potentially be considered, provided that the encoder may be computed exactly.
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As demonstrated in this section, the resulting models may be used for clustering
and data generation.

5.4.2 Kernelized Information Theoretic Clustering

5.4.2.1 Gaussian Mixture, K-means, and Kernelized Information-Theoretic

Clustering for Spiral Data

Here we consider a direct application of the encoder models (5.12) and their
kernelized extensions (5.24) to clustering of intrinsically non-Gaussian data. In
contrast to the bound Î(x, y) optimized in Section 5.4.1, the encoder models
considered here were trained by maximizing the exact mutual information I(x, y)
as discussed in Section 5.2.2. For the kernelized encoders (5.22), we also learned
optimal kernel parameters (focusing specifically on the RBF kernel, see expression
(5.30)). We compare both information-theoretic approaches to the k-means and
the Gaussian mixture clustering (assuming the standard EM training).

As discussed earlier in Section 5.4.1, clustering by maximizing the mutual in-
formation corresponds to learning of an optimal encoder, where the code space
{y} defines the generally unknown cluster labels. In the first set of experiments,
we considered the discrete code space with |y| = 3 states of the output variables.
(Effectively, the size of the code space |y| gives an upper bound on the number
of clusters; in what follows we assume that this number is fixed). The unlabeled
training data was generated as x1(t) = t cos(t)/4, x2(t) = t sin(t)/4, with t chang-
ing uniformly in [0, 3.4π] (here x1 and x2 correspond to different coordinates of
the sources x ∈ R

|x|, |x| = 2). The total number of patterns was M = 70.
Figure 5.4 illustrates typical allocations of cluster labels to the considered

dataset. The data was clustered by a Gaussian mixture model trained by maxi-
mizing the likelihood (Figure 5.4 left), the k-means algorithm (Figure 5.4 medium),
and the kernelized encoder model (5.24) trained by maximizing I(x, y) (Figure
5.4 right). For the considered RBF kernel (5.31), we learned the inverse vari-
ance parameter β. Color intensity of each pattern shown on Figure 5.4 is given
as an average of the cluster colors weighted by the probability of cluster alloca-
tions p(yj|x). The “pure” cluster colors corresponding to deterministic cluster
assignments are shown by light-, medium-, and dark-gray squares.

As we see from Figure 5.4 (left), Gaussian mixture models trained by maxi-
mizing the likelihood resulted in largely stochastic cluster allocations; from the
corresponding plot, it is qualitatively difficult to distinguish between patterns
which belong to “medium-gray” and “dark-gray” clusters. Moreover, for the il-
lustrated case we see a large disproportion in cluster sizes. Specifically, we see
that 3 or 4 patterns (out of 70) form a unique cluster (shown in light-gray on Fig-
ure 5.4 (left)). This observation is further confirmed by Figure 5.5 (left)), which
shows responsibilities of the three mixture components for all 70 data patterns.
Figures 5.4 (middle) and 5.5 (middle) show the corresponding cluster assignments
for the k-means algorithm. We see that while the similarly clustered points in-
deed lie close to each other in R

2 according to the L2-norm, the allocated clusters
are not locally smooth in t. (We also note that maximization of the bound (5.1)
on I(x, y) for the encoding distribution corresponding to the exact posterior of a
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Figure 5.4: Clustering for |y| = 3. Left: Gaussian mixtures; Middle: K-means;
Right: information-maximization for the (RBF-)kernelized encoder. Light, medium,
and dark-gray squares show the cluster colors corresponding to deterministic cluster
allocations. The color intensity of each training point x(m) is the average of the pure
cluster intensities, weighted by the responsibilities p(yj|x

(m)). Nearly indistinguishable
dark colors for the majority of patterns under the Gaussian mixture clustering indicate
soft cluster assignments (see also Figure 5.5). Note that by applying the kernelized
IM algorithm, we obtain nearly deterministic cluster assignments to locally smooth
data regions.

Gaussian mixture model led to the results similar to a soft form of the k-means
clustering. This agrees with previous observations that the cluster allocations
produced by a model maximizing (5.1) are qualitatively not very different from
the k-means (see Section 5.4.1)).

Figures 5.4 and 5.5 (right) illustrate cluster allocations produced by maxi-
mizing the mutual information for the kernelized encoder (5.22). As mentioned
above, in the considered set of experiments we have applied the RBF kernels
(5.31) with adaptable parameters β. The kernel parameters β were initialized at
β0 = 2.5. The initial settings of the coefficients A ∈ R

M×|y| in the feature space
were samples from NAij

(0, 0.1). The log-variances s̃1, . . . , s̃|y| were initialized at
zeros. The encoder parameters A and {s̃j|j = 1, . . . , |y|} (along with the RBF
kernel parameter β) were optimized by applying the scaled conjugate gradients
procedure (see e.g. Bishop (1995)). The training stopped at the 46th iterations
of the algorithm, after the changes in the consecutive evaluations of the objective
I(x, y) remained lower than 10−15 for three consecutive iterations. We see that
in the considered case we indeed obtain non-degenerate well-separated clusters
which are locally smooth in t (see Figure 5.4 (right)). The local smoothness of
cluster allocations is further confirmed by Figure 5.5 (right) (note a slight de-
crease in coding certainty for the patterns lying close to the cluster boundaries).
The results are shown for β ≈ 0.825 obtained by the non-linear ascent on I(x, y).

Note that in the experiments described here we have made no strong as-
sumptions about the choice of the kernel function which could be particularly
suitable for clustering this specific dataset. Undoubtedly, a careful choice of the
kernel could potentially lead to a better visualization of the locally smooth, non-
degenerate structure. Instead, we considered the commonly used RBF kernel
with adaptable kernel parameters. The results suggest that maximization of mu-
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Figure 5.5: Probabilities p(yj|x
(m)) for the spiral data, x ∈ R

2, y ∈ {y1, y2, y3}.
The total number of patterns M = 70. Left: Gaussian mixtures; Middle: K-means;
Right: information-maximization for the kernelized encoder model (RBF kernel with
the learned parameter β = 0.825).

tual information in discrete nonlinear channels may indeed be a useful technique
to consider in unsupervised clustering applications. We will now consider an-
other application of the method, and show that by learning kernel parameters we
may indeed obtain better visualizations than by using fixed kernel functions or
applying more common clustering techniques.

5.4.2.2 Kernelized Information-Theoretic Clustering for Spatially Trans-

lated Letters

Figures 5.6 and 5.7 show an application of the the mutual information maxi-
mization to clustering of spatially translated letters, for the code sizes |y| = 2
and |y| = 3 respectively. As in the previous case shown on Figure 5.4, patterns
allocated to different clusters are shown by different color intensities. The data
consisted of M = 210 patterns, sampled from models of Latin letters7 (70 per
letter). The training set was constructed in such a way that the distance be-
tween the neighboring letters was roughly constant (by this we mean that the
distances between the sample means for the neighboring letter models were fixed
to be the same). In the considered case, we assumed that the neighboring letters
were relatively close to each other (compared to the letter sizes), so that points
sampled from different letters could in fact be geometrically closer to each other
than points sampled from a single letter model. As in the previous set of exper-
iments, we have compared information-theoretic clustering in kernelized encoder
models with the k-means and Gaussian mixture clustering. We have also explored
the effects of introducing projections into the feature space and applied the IM
procedure for both encoder models described in Section 5.2.2 and 5.2.3 (which
we will refer to as simple, or non-kernelized encoders and kernelized encoders
respectively).

By analogy with the previously discussed experiments (see Figure 5.4), we
can see that for the considered case the IM framework indeed results in anthro-

7The generative model for each letter is given by a mixture of constrained uniform line
segments with additive spherical Gaussian noise.
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Figure 5.6: Learning cluster allocations for |y| = 2. Where appropriate, the stars show
the cluster centers. Top left: clustering with the two-component Gaussian mixture
trained by the EM algorithm on L; Top right: clustering with the k-means; Bottom
left: clustering with the encoder model p(yj|x) ∝ exp{−‖x − wj‖

2/sj} trained by
maximizing mutual information I(x, y); Bottom right: clustering with the kernelized
encoder model p(yj|x) ∝ exp{−‖φ(x)−wj‖

2/sj} trained by maximizing I(x, y) (the
results are shown for the RBF kernel). For the kernelized model, the inverse variance
β of the RBF kernel varied from β0 = 1 (at the initialization) to β ≈ 0.604 after
convergence.
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Figure 5.7: Learning cluster allocations for |y| = 3. Where appropriate, the stars show
the cluster centers. Top left: clustering with the three-component Gaussian mixture
trained by the EM algorithm on L; Top right: clustering with the k-means algorithm;
Bottom left: clustering in the kernelized encoder model (the results are shown for
the RBF kernel with the inverse variance fixed at β0 = 1); Bottom right: clustering
with the kernelized encoder model with the adaptable kernel parameter (the inverse
variance of the RBF kernel varied from β0 = 1 (at the initialization) to β ≈ 0.579
after convergence). Note that by learning the kernel parameter β we obtain higher
values of the mutual information (I ≈ 1.10 vs I ≈ 1.02) and more intuitive cluster
assignments.
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Figure 5.8: Learning cluster allocations by the feature-space k-means. The results are
shown for the fixed RBF kernels with the inverse variance parameter β. Left: |y| = 2,
β1 = 1 and β2 = 0.604; Right: |y| = 3, β1 = 1 and β2 = 0.579. The number of
training patterns was M = 210. The patterns shown by the double circles ⊚ are the
only ones clustered differently for the two settings of the kernel parameters (β1 and
β2), assuming identical initializations. The parameters β2 were set to the converged
values of β for the corresponding encoder models (cf Figure 5.6 (bottom left), Figure
5.7 (bottom left)).

pomorphically sensible cluster allocations. Indeed, in contrast to the k-means
or Gaussian mixture clustering, the information-theoretic approach appears to
favour smoother local representations, which results in arguably more intuitive
cluster assignments. Figure 5.6 shows typical cluster assignments produced by
the k-means algorithm (top right) and Gaussian mixtures trained by the EM (top
left) for |y| = 2. Again, two different clusters are illustrated by different color
intensities (light- and dark-gray), and soft cluster assignments are shown by the
intermediate intensities. As usual, the EM for the mixture model was started at
the k-means initialization, with the initial covariances set to the sample covari-
ances of the associated k-means clusters, and the mixture coefficients proportional
to the cluster sizes. As we see from the plots, both methods result in roughly
identical cluster allocations, and for this case divide the dataset into two roughly
symmetric parts, consisting of the letter T and half of the letter A. (Not surpris-
ingly, the cluster allocations produced by the Gaussian mixture model are soft –
other than that, the resulting clusters are not too different from those given by
the k-means). Generally, other initializations of the mixture model resulted in
more degenerate cluster assignments.

On the other hand, we can see that for the considered case the clusters pro-
duced by the encoder models are arguably more intuitive. Figure 5.6 (bottom
left) shows two typical clusters generated by the non-kernelized encoder model
trained by the IM for |y| = 2. The initial weights of the simple encoder model

(5.12) were set according to W
(0)
ij ∼ NWij

(0, 0.1), W(0) = {W (0)
ij } ∈ R

|x|×|y|, with

the log-variances s̃
(0)
1 , s̃

(0)
2 ∼ N (0, 0.1). We used a similar initialization for the
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kernelized encoder (5.22), where instead of the matrix of the weights W we have

learned the matrix of the feature space coefficients A(0) = {A(0)
ij } ∈ R

M×|y|. For
the kernelized model, we considered the RBF kernel with the initial settings of
β0 = 1. Both the non-kernelized and kernelized encoder models were trained by
performing a numerical ascent on I(x, y) (by the scaled conjugate gradients). As
we see from the plot, the simpler model extracts a single letter T as a separate
cluster, and allocates the remaining training patterns to the other cluster (Figure
5.6 (bottom left)). The clusters produced by the trained kernelized encoder model
are typically different (see Figure 5.6 (bottom right)). As we see from the plot,
the kernelized encoder model clusters both T ’s similarly, separating them from
the model of A, which may arguably be an intuitive coding scheme. Note that
both T s are clustered together despite being located geometrically far from each
other in the data space. The results of (Figure 5.6 (bottom right)) are shown
for β ≈ 0.6035 obtained after convergence of the SCG learning procedure. Im-
portantly, the obtained results appear to be stable for different samples from
the underlying distribution and different initializations of the IM learning proce-
dure (provided that the RBF kernel parameter β is not too large or too low, i.e.
K ∈ R

M×M has a non-degenerate spectrum).
Figure 5.7 shows typical cluster allocations produced by the three methods

for the codesize |y| = 3. Again, Gaussian mixtures and the k-means (Figure 5.7
(top left), Figure 5.7 (top right)) result in an arguably inferior performance to the
kernelized IM clustering (Figure 5.7 (bottom right)). Moreover, we can see that
by learning the RBF kernel parameter β, we may obtain better visualizations
than for the case when β is fixed (Figure 5.7 (bottom left)). Also, by learning
kernel parameters we typically get higher values of the mutual information I(x, y)
(I ≈ 1.10 vs I ≈ 1.02 when β is fixed for the illustrated case). The results
were confirmed repeatedly for different samples from the underlying distribution
and different initializations of the learning algorithms. Generally, the kernelized
encoder with the adaptable RBF kernel parameters was the only method (out of
the considered ones) which resulted in an almost perfect separation of the letter
models.

Finally, we have compared the information-theoretic clustering method with
the kernel k-means algorithm (see e.g. Zhang and Rudnicky (2002), Dhillon et al.
(2004), Wang et al. (2004)), where for a fixed kernel function each pattern is
deterministically assigned to a cluster depending on the distance from the cluster
mean in the feature space. Figure 5.8 illustrates a typical application of the
kernelized k-means to clustering of the considered dataset for |y| = 2 (left), and
|y| = 3 (right), started at the same initializations as the previous experiments
shown on Figure 5.6 and Figure 5.7. Again, for comparison with the kernelized
IM clustering, we show the results for the RBF kernels with the inverse variance
parameter β. For both choices of the code space sizes |y|, the kernel parameter
was set to the initial and the converged value of β obtained during the kernelized
encoder clustering (see Figure 5.6 (bottom right), 5.7 (bottom right)); for example,
for |y| = 2 we have considered β = 1 and β = 0.6035. We see that while the
settings of β could influence the resulting cluster allocations, the clusters were
not very different (assuming identical initializations for both choices of β). As
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mentioned in Section 5.2.3, the principle advantage of our method is that it
may indeed be viewed as an optimization procedure (namely, mutual information
maximization) for learning kernel parameters. This contrasts with the majority
of other approaches to unsupervised nonlinear clustering in feature spaces, which
typically consider fixed similarity measures. As we have shown, learning kernel
parameters may indeed lead to more intuitive visualizations of the underlying
structure (see also Agakov and Barber (2005b) for an empirical comparison with
the spectral clustering method of Ng et al. (2001)).

5.5 Summary

In this chapter we described several possible extensions of the IM framework
to nonlinear encoder models. First, we considered optimizing the specific lower
bound on the mutual information, where the encoder distribution of the chan-
nel was given by the exact posterior of the corresponding generative model. We
explored this case for Gaussian mixtures, and compared the EM and the IM
learning for a dataset which could not be easily modeled by a Gaussian mixture
distribution. For this case we empirically demonstrated that both methods give
rise to generally different optimization surfaces, and optimization of the bound
Î(x, y) may favour more uniform representations in the code space, which may
in some cases lead to an arguably more informative representation of the un-
derlying distribution. Additionally, we pointed out that in the limiting special
case of asymptotically noiseless spherical Gaussian decoders, the IM algorithm
optimizing the considered bound Î(x, y) reduces to the k-means algorithm.

Then we focused on the problem of information-theoretic clustering in encoder
models, where the generally stochastic nonlinear mapping from the sources to the
discrete codes was learned by maximizing the exact mutual information I(x, y).
For this case, we described a simple and practical algorithm applicable to unsu-
pervised clustering, and explored its extensions by considering kernelized encoder
models. Empirically, we demonstrated that the resulting information-theoretic
clustering approach favorably compares with the common clustering techniques,
and the option of learning kernel functions may indeed be of a practical benefit
for visualizing the underlying structure of the data.

Finally, we reviewed some of the theoretical properties of the IM for higher-
dimensional code spaces, and showed that some of the popular dimensionality
reduction techniques may be interpreted as special instances of the variational in-
formation maximizing procedure. Specifically, we extended the work of Bourlard
and Kamp (1988) and Bourlard (2000) to arbitrary kernelizable feature mappings
applied in the context of stochastic encoding, and showed the nothing could be
gained by using nonlinear encoders and linear variational decoders in the con-
text of variational information maximization in Gaussian channels. To handle
the intrinsic constraints of linear Gaussian variational decoders applied in the
context of nonlinear encodings, we suggested a proper variational relaxation of
the bound on I(x, y) which could be optimized for the encoder, data decoder,
and feature decoder distributions under the assumption of a nonlinear variational
decoding distribution. For nonlinear Gaussian encoding distributions, this led to
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kernel PCA (Schoelkopf et al. (1998)) as the optimal solution for encoder weights.
Additionally, we outlined a simple relation of the variational framework to the re-
cent work on Gaussian Process Latent Variable Models (Lawrence (2003)), which
may be interpreted as the variational information-maximization procedure in the
noiseless limit of a nonlinear channel.

As an extension of the work described in this chapter, we note that a further
study of the bound (5.37) on mutual information for nonlinear Gaussian encoders
may need to be considered. As discussed in Section 5.3 and Appendix C.3.5, the
bound indeed provides a proper information-theoretic objective for learning opti-
mal kernel parameters. However, our current experience suggests that the results
may be strongly influenced by the choice of constraints on the Gram matrix
K ∈ R

M×M and specific definitions of the feature-to-data mappings. By choos-
ing appropriate constraints on the kernel functions and the variational decoder
distributions, one may hope to adapt the nonlinear Gaussian IM framework to
visualizing high-dimensional data8. Another application field to explore is com-
munication of discrete-valued data over channels with Gaussian noise, where a
specific practical application may include code division multiple access in cellular
telephony (see e.g. Viterbi (1995)).

Additionally, a comparison of the IM clustering with other families of cluster-
ing techniques will need to be considered. Specifically, it is interesting to see how
information-maximization in nonlinear channels with the considered definition of
the encoding distribution (5.22) could be related to the common spectral cluster-
ing approaches (see e.g. Perona and Freeman (1998), Kannan et al. (2000), Ng
et al. (2001), Yu and Shi (2003)). Most of such approaches use eigenvalues of the
fixed similarity matrices to transform the original data set, and apply any of the
known clustering techniques on the transformations (see Weiss (1999) for a uni-
fying discussion). It is intuitive that it may indeed be possible to interpret some
of the spectral clustering methods from the information-theoretic viewpoint. In-
deed, it is well known that the standard k-means algorithm (Hartigan and Wong
(1979)) may be viewed as the trace maximization problem of the Gram matrix
of the original data patterns (Zha et al. (2001)). Recently this result has been
generalized to show that popular multi-class spectral clustering techniques using
normalized cuts (e.g. Shi and Malik (2000), Ng et al. (2001)) may in fact be in-
terpreted as a form of the weighted k-means algorithm (Bach and Jordan (2003),
Dhillon et al. (2004)). The results of Section 5.2.1 suggest that it may potentially
be possible to relate the spectral clustering methods to a specific form of the
variational information-maximizing procedure, though a direct relation between
the methods currently remains unclear.

Fundamentally, one of the principal advantages of our approach to nonlinear
dimensionality reduction is a simple way to learn parameters of the kernel function
in the unsupervised context. As we showed, the resulting procedure is numerically
and conceptually simple; specifically, in the considered cases it did not require

8Note that if the projection noise may be reduced to zero, one may consider optimizing
simpler objective functions, such as (5.40) – cf Gaussian Process Latent Variable Models. It is
therefore believed that a further study of nonlinear Gaussian channels for dimensionality reduc-
tion may be of a practical interest mainly in situations when the encoding noise is unavoidable.
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computations of the matrix inversions or eigenvalue decompositions of the Gram
matrices. Also, once the channel distributions (and the corresponding kernels)
are parameterized, the method does not require complex problem-specific algo-
rithmic heuristics. Furthermore, one may expect that the information-theoretic
view of clustering could potentially offer common advantages over the algorith-
mic approaches; specifically, it may be possible to extend the method to richer
encoding distributions.
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Chapter 6

Variational Information

Maximization for Learning

High-Dimensional Discrete

Representations

In Chapter 5 we described applications of the information-maximizing framework
to learning optimal parameters of nonlinear encoder models. One specific applica-
tion of the framework which we considered was information-theoretic clustering.
Due to the low cardinality of the codes (cluster labels), optimization of mutual
information between the discrete codes y and the continuous sources x could in
that case be performed exactly, and a number of nonlinear extensions of simple
channels could easily be considered (see Section 5.2).

While being practically useful for visualizing unlabeled data, information-
theoretic clustering may be viewed as a limiting case of discrete encoding. In
many domains much richer encoding schemes must be considered. For example,
in the neurophysiological domain it may often be a matter of interest to estimate
how much information about the source stimuli may be contained in a (generally
unknown) population of neural spikes. Additionally, the problem domain may
impose constraints on the channel distributions, which may generally lead to the
need of learning stochastic high-dimensional encoding mappings. As discussed
in Section 1.4, maximization of the exact mutual information in this case may
potentially be problematic, as it will generally require an explicit integration over
the high dimensional encodings.

The primary goal of this chapter is to explore applicability of the variational
information-maximizing framework in the context of learning high-dimensional
binary representations of continuous source patterns. While the obtained results
are general, we believe that the application area where they may be particularly
useful is stochastic neural coding. We show that the simplest instance of our vari-
ational information-maximizing formulation provides a convenient framework for
population coding in stochastic point neuron models. By analogy with Linsker
(1997), we demonstrate that it is possible to derive an information-maximizing
procedure which only requires local computations; however, our results are signifi-
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cantly more general, as they are applicable in the case of stochastic, non-invertible
encoding mappings. Moreover, we demonstrate that for the considered choice of
a conditionally factorized encoder model, our variational method favorably com-
pares with two approximate techniques maximizing Fisher Information-based ap-
proximations of lower bounds on the generally intractable I(x, y).

6.1 Introduction

The problem of encoding real-valued stimuli x ∈ R
|x| by a population of binary

spikes y ∈ {−1, 1}|y| may be addressed in many different ways. Essentially, the
goal is to adapt the parameters of any mapping p(y|x) to make a desirable popu-
lation code for a given set of input stimuli {x}. There are many possible ways to
address this problem. One could be that any reconstruction based on the popu-
lation should be accurate. This is typically handled by appealing to the Fisher
Information (e.g. Cramer (1946), Cover and Thomas (1991)) which, with care,
can be used in order to bound mean square reconstruction error (see e.g. Johnson
(2003) for an introductory discussion).

Here we consider maximizing the amount of information which the spiking
patterns contain about the stimuli. In this framework, a population coding for-
mulation may be viewed as a special case of the information-maximizing prob-
lem, where continuous source signals are mapped into a discrete high-dimensional
space. While much of the earlier work focuses on simple channels (e.g. Linsker
(1988), Pouget et al. (1998), Zhang and Sejnowski (1999), Bethge et al. (2002))
or noiseless invertible mappings (Nadal and Parga (1994), Bell and Sejnowski
(1995), Linsker (1997)), it is particularly interesting to address the problem of
high-dimensional stochastic coding. Many previous attempts to apply mutual in-
formation1 to population coding have been made (e.g. Brunel and Nadal (1998),
Stocks and Mannella (2001), Kang and Sompolinsky (2001), Samengo and Treves
(2001)). However, for large population sizes and non-invertible mappings to the
code space, maximization of the mutual information is generally a computation-
ally intractable task (see Section 1.4). Most current studies address the problem
of computational intractability of maximizing I(x, y) by considering alternative
objective criteria, e.g. those based on numerical approximations of I(x, y) derived
under specific asymptotic assumptions (see e.g. Brunel and Nadal (1998), Kang
and Sompolinsky (2001), Hoch et al. (2003)). While these approximations may
result in asymptotic efficiency for many encoding channels, their applicability for
specific models may be strongly affected by the form of encoder distributions,
which may lead to instability of the resulting optimization procedure for specific
encoding schemes (Agakov and Barber (2004b)).

In Chapter 2 we described a simple and general variational procedure optimiz-
ing a proper bound on mutual information I(x, y) between the sources x and the
codes y. In contrast to most of the existing techniques, the procedure maximizes

1Many other methods suggesting to optimize alternative objectives, e.g. redundancy (Barlow
(1989), Atick (1992), Redlich (1993), Field (1994)), may be shown to correspond to specific
relaxations (Nadal et al. (1998)) of the exact mutual information, which also involves generally
intractable computations.
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a proper bound on I(x, y), rather than an asymptotic approximation of a bound
(Brunel and Nadal (1998)) or approximation of the exact mutual information for
a local region of the source space (Szummer and Jaakkola (2002), Corduneanu
and Jaakkola (2003)). The primary goal of this chapter is to apply the varia-
tional IM method to learning high-dimensional stochastic binary representations
of continuous source patterns. As we believe that this procedure offers a con-
venient framework for addressing sub-goals of predictive population coding, we
focus specifically on a biologically inspired channel parameterization.

6.2 Variational Learning of Population Codes

The principled information theoretic approach to learning neural codes involves
maximization of the mutual information with respect to parameters of the en-
coder p(y|x). In what follows we assume a conditionally factorized decoder, i.e.

p(y|x) =
∏|y|

i=1 p(yi|x), which is arguably the simplest case of a feed-forward map-
ping (each unit yi is defined by a simple point-neuron model). This assump-
tion also facilitates comparisons with other approximate information-maximizing
techniques (such as the common approximations of Brunel and Nadal (1998), or
reformulations of the local criteria derived in a different context by Corduneanu
and Jaakkola (2003)).

Since for large-scale stochastic systems exact evaluation of I(x, y) is in gen-
eral computationally intractable, we consider optimizing the generic lower bound
Ĩ(x, y) = const+〈log q(x|y)〉p(y|x)p̃(x), where p̃(x) is the empirical distribution of the
high-dimensional continuous stimuli x ∈ R

|x|. To learn optimal stochastic repre-
sentations of the continuous training patterns x(1), . . . , x(M) according to the lower
bound Ĩ(x, y), we need to choose a continuous density function for the decoder
q(x|y). Computationally, it is convenient to assume that the decoder is given
by the isotropic Gaussian q(x|y) ∼ N (Uy, s2I), where U ∈ R

|x|×|y|. Other (e.g.
non-linear) variational decoders may potentially be considered and relaxations
analogous to the ones described in Section 5.3.1 may potentially be used. How-
ever, we show that in situations when the variational decoder is a constrained
linear Gaussian, the resulting iterative optimization procedure is particularly
convenient, which results in a local (and arguably more biologically plausible)
learning scheme.

We note that the proposed method describes a theoretically rigorous frame-
work for maximizing information content which the high-dimensional spikes con-
tain about (generally high-dimensional) continuous stimuli. The encoder distri-
bution p(y|x) may in this case be interpreted as a stochastic mapping from the
physical to the neural domain. One particularly interesting biological example
where such mappings may occur is a mammalian retina, where the continuous-
valued sources x ∈ R

|x| define activations at the photoreceptor layer, and the
high-dimensional outputs y ∈ {−1, 1}|y| correspond to the on-off encodings in the
ganglion cells (e.g. Watanabe and Rodieck (1989), Lee et al. (1998)). While the
neurophysiological interpretation of the variational decoder q(x|y) is not properly
understood, effectively the distribution defines the stochastic perceptual projec-
tion of the retinal encoder models (Eckmiller et al. (2005)). Under the considered
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parameterization, the local field of each perceptual unit (xi under the variational
distribution q(xi|y)) is a linear combination of the ganglion firings, with an added
white noise. Effectively, this choice of the decoder indicates that small changes in
the post-synaptic firings do not significantly vary our guesses about the generating
stimuli. It is clear that for the considered choice of the decoder distribution, the
percepts are conditionally independent (i.e. q(x|y) =

∏|x|
i=1 q(xi|y)), i.e. the recon-

struction at each perceptual unit is independent from the neighboring percepts
for a given pattern of ganglion firings. Conveniently, this facilitates derivations
of a local learning rule. Note that for the considered case it is straightforward to
evaluate the generic bound Ĩ(x, y) exactly, since it only involves computations of
the second-order moments of y over the factorized distribution p(y|x).

6.2.1 Local Iterative Learning

Here we consider the case of high-dimensional continuous patterns x ∈ R
|x| rep-

resented by stochastic firings of the post-synaptic neurons y ∈ {−1, +1}|y|. For
each neuron yi, we assume the logistic parameterization of the encoder p(yi|x),
so that the probability of firing monotonically increases with an increase in the
membrane potential (using any other parameterization of p(yi|x) will lead to a
straight-forward re-formulation of the model). For conditionally independent ac-
tivations, we obtain

p(y|x) =

|y|
∏

i=1

p(yi|x)
def
=

|y|
∏

i=1

σ(yi(w
T
i x + bi)) (6.1)

where wi ∈ R
|x| is a vector of the synaptic weights for neuron yi, bi is the cor-

responding threshold, and σ(a)
def
= 1/(1 + e−a). It is obvious that (6.1) indeed

defines a properly normalized conditional distribution.
By utilizing the factorial assumptions p(y|x) =

∏|y|
i=1 σ(yi(w

T
i x + bi)) and

q(x|y) ∼ N (Uy, s2I), the straight-forward substitution into (2.2) leads to

Ĩ(x, y) ∝
M∑

m=1

tr

{

U〈y〉p(y|xm)x
T
m −

1

2
UT U〈yyT 〉p(y|xm)

}

+ const, (6.2)

which needs to be optimized for the encoder and decoder weights W ∈ R
|y|×|x|,

U ∈ R
|x|×|y| and the biases b ∈ R

|y| (we have assumed that s2 is a constant
incorporated into the proportionality factor). We may now compute the matrix
derivatives of (6.2) to obtain

∂Ĩ(x, y)

∂U
∝

M∑

m=1

[
x(m)λT (x(m)) − U

(
λ(x(m))λT (x(m)) − Dλx

(x(m)) + I
)]

∈ R
|x|×|y|

(6.3)

where x(m) = {x1
m, . . . , x

|x|
m} ∈ R

|x| is the mth vector of input stimuli, and

λi(x
(m))

def
= 〈yi〉p(yi|x(m)) = 2σ(wT

i x(m) + bi) − 1 (6.4)
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is the conditional mean. The diagonal matrix Dλx
(xm) ∈ R

|y|×|y| is defined by

Dλx

def
= diag

(
λ2

1(x), . . . , λ
2
|y|(x)

)
= I − cov(y|x) ∈ [0, 1]|y|×|y|, (6.5)

which is a measure of consistency of neural firings. Note that evaluation of
the gradient (6.3) requires computing the expected firings λi(x) of the output
units {yi|i = 1, . . . , |y|}, which only involves local feed-forward computations.
Specifically, we note that computations of the gradients for the decoder weights
∂Ĩ/∂U do not require global calculations (such as evaluations of matrix inverses,
etc.), which would have been difficult to justify biologically.

Analogously, by differentiating the bound Ĩ(x, y) with respect to the weights
and biases of the ith encoding unit, we get

∂Ĩ(x, y)

∂wij

∝
M∑

m=1

x
(m)
j

[
1 − λ2

i (x
(m))

]
uT

i

[
x(m) + uiλi(x

(m)) − Uλ(x(m))
]
, (6.6)

∂Ĩ(x, y)

∂bi

∝
M∑

m=1

[
1 − λ2

i (x
(m))

]
uT

i

[
x(m) + uiλi(x

(m)) − Uλ(x(m))
]

(6.7)

where ui corresponds to the ith column of the decoder weights U ∈ R
|x|×|y|, and

wij links the jth pre-synaptic and the ith post-synaptic units. Note that the
updates for the biases bi and encoder weights wij involve computations of the

third and fourth power terms x
(m)
k 〈yj|x

(m)〉〈yl|x
(m)〉 and x

(m)
i x

(m)
k 〈yj|x

(m)〉〈yl|x
(m)〉,

which may also be performed locally.
An arguably more biologically plausible interpretation of the learning rule may

be obtained by performing the stochastic updates. If ỹ
(m)
i = 1 with probability

σ(wT
i x(m) + bi) (and ỹ

(m)
i = −1 otherwise), the gradients (6.6) and (6.7) may be

transformed to

∆w
(m)
ij = ηvar(yi|x

(m))x
(m)
j uT

i

[

x(m) + uiỹ
(m)
i − Uỹ(m)

]

(6.8)

∆b
(m)
i = ηvar(yi|x

(m))uT
i

[

x(m) + uiỹ
(m)
i − Uỹ(m)

]

, (6.9)

where η is the learning rate, and ∆w
(m)
ij , ∆b

(m)
i are the encoder updates for the

mth observation. The pre-factor var(yi|x
(m)) = 1 − λi(x

(m)) ∈ [0, 1] indicates
that optimally, the training should slow down once the weights saturate and the
firings become more deterministic. (Suboptimally and conventionally, the term
is ignored, which corresponds to its first-order Taylor expansion around zero field
of yi). Similarly, we may derive the stochastic updates for the parameter of the
perceptual mapping, leading to

∆U(m) = ηU

[

x(m)ỹ(m) − UỸ(m)
]

∈ R
|x|×|y|, (6.10)

where ηU is the learning rate, Ỹ(m) def
= {ỹ(m)

i ỹ
(m)
j (1− δij)+ δij} ∈ R

|y|×|y|, and δij is
Kronecker delta. Note that the updates in (6.8) – (6.10)) are easily representable
as weighted Hebbian and anti-Hebbian terms, where the receptive field of the ith
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post-synaptic unit yi is affected not only by the activations at the pre-synaptic
layer x, but also (implicitly) by the stochastic firings of the neighboring post-
synaptic units ỹj (j 6= i).

Generally, expressions (6.3), (6.6) – (6.7) define the updates of the IM algo-
rithm on Ĩ(x, y) and may be used in any standard numerical optimization proce-
dure (see e.g. Bishop (1995)). An arguably more biologically plausible alternative
is to perform the stochastic ascent (expressions (6.8) – (6.10)). Finally, we note
once again that the explicit parameterization of the encoder p(y|x) and the vari-
ational decoder q(x|y) makes it easy to incorporate additional constraints on the
encoder and decoder parameters W ∈ R

|y|×|x|, b ∈ R
|y|, and U ∈ R

|x|×|y|, which
may be used to transform the variational IM learning so that the solutions satisfy
additional requirements.

6.2.2 Optimal Encoder Models

In order to simplify the analysis of the variational bound (6.2), we will follow the
strategy of Section 2.2.2 and re-define the objective Ĩ(x, y) as a function of the
encoder parameters. As mentioned in Chapter 2, for non-convex functions this
may lead to a different optimization surface and a generally more complex (non-
local) learning rule. However, the analysis is still interesting, as the resulting
bound may be more easily compares with the common numerical approximations
of the generally intractable mutual information I(x, y).

Expressing the bound (6.2) as a function of the encoder p(y|x) alone, we get

U = 〈xyT 〉〈yyT 〉−1, Ĩ(x, y) ∝ tr
{
〈xyT 〉〈yyT 〉−1〈yxT 〉

}
+ const (6.11)

(from now on we will ignore the constant which has no effect on the optimization
surface). The objective (6.11) is a proper bound on I(x, y) for any choice of the
stochastic mapping p(y|x). We may therefore2 use it for optimizing a variety of
channels with continuous source vectors.

For the considered parameterization of the encoding distribution (6.1), we
may transform (6.11) to obtain

Ĩ(x, y) ∝ tr
{
〈xλT

x 〉〈λxλ
T
x − Dλx

+ I〉−1〈λxx
T 〉

}
, (6.12)

where the averages are computed over p̃(x)p(y|x), and p̃(x) ∝
∑M

m=1 δ(x − x(m))
is the empirical distribution. Again, λx ∈ [−1, 1]|y| is a vector whose elements

λi(x)
def
= 〈yi〉p(yi|x) = 2σ(wT

i x+ bi)−1 correspond to expected firings of the ith unit
for a fixed stimulus x, and Dλx

(x(m)) ∈ R
|y|×|y| is defined by expression (6.5). The

expectations in (6.12) are computed over the empirical distribution.
Since the lower bound (6.12) depends only on the thresholds and synaptic

weights, the learning rule is easily obtained by differentiating (6.12) with respect

2From (6.11) it is clear that if 〈yyT 〉 is near-singular, the varying part of the objective Ĩ(x, y)
may be infinitely large. However, if the mapping x 7→ y is probabilistic and the number of
training stimuli M exceeds the dimensionality of the neural codes |y|, the optimized criterion
is typically positive and finite.
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to the encoder parameters b ∈ R
|y| and W ∈ R

|y|×|x| (where rows of W are given
by wT

i ∈ R
1×|x|). This leads to

∆W ∝
M∑

m=1

(
I − Dλ(x(m))

) (

D̃λ(x(m)) + Σ−1
yy Σyx

[
x(m) − ΣxyΣ

−1
yy λ(x(m))

]) (
x(m)

)T

(6.13)

where ∆W ∈ R
|y|×|x| is the weight update, Σyy

def
= 〈yyT 〉, Σyx ≡ ΣT

xy
def
= 〈yxT 〉 are

the second-order moments, and D̃ is the diagonal matrix

D̃
def
= diag

{

Σ−1
yy Σyx

(
Σ−1

yy Σyx

)T
}

∈ R
|y|×|y|, (6.14)

where diag(A) = {aijδij}, and δij is Kronecker delta. The update for the threshold
∆b ∈ R

|y| has the same form as (6.13) without the post-multiplication of each
term by the training stimulus (x(m))T .

From (6.13) it is clear that the magnitude of each weight update ∆wi ∈
R

|x| should decrease with an increase in the corresponding conditional variance
var(yi|xm). Similarly to the case of the local iterative learning (described in
Section 6.2.1), the pre-factor

(
I − Dλ(x(m))

)
= cov(y|x(m)) = diag

{
var(y1|x

(m)), . . . , var(y|y||x
(m))

}
∈ R

|y|×|y|

(6.15)
may be interpreted as a variable learning rate. It is intuitive that as training con-
tinues, the magnitudes of the synaptic weights would typically increase (as this
would lead to a decrease in the conditional entropy H(y|x)). For each unit yi, this
would typically result in a decrease in the conditional variance var(yi|x

(m)), lead-
ing to the parameter saturation effect. The sufficient condition for the training
to stop is the noiseless limit of the encoding projection cov(y|x(m)) ≈ 0|y|; for the
considered parameterization of the encoding distribution, this may only happen
for the divergent membrane potentials of the post-synaptic units. By analogy
with a discussion of the Gaussian channel in Section 4.1.1, this stipulates the
need of additional constraints3 on the encoder weights.

It is clear that by analogy with (6.8) – (6.10) we may consider stochastic
approximations of (6.13), which leads to an arguably more biologically plausible
formulation. Nevertheless, the fundamental criticism of the learning rule (6.13)
still applies: the rule (6.13) has an intrinsically non-local nature, and a careful
approximation of the second-order moments Σ−1

yy , Σyx may need to be considered.
The learning rule (6.13) may then be decomposed as a weighted combination
of Hebbian and anti-Hebbian terms, though the nature of dependencies of the
weighting coefficients on the firing patterns and encoder parameters is non-local.

Finally, it is interesting to note that by considering the first-order expansion
of each pre-factor var(yi|x

(m)) around wT
i x(m) + bi ≈ 0, we may transform (6.13)

to
∆W ∝ D̃〈λxx

T 〉 + Σ−1
yy Σyx

(
Σxx − ΣxyΣ

−1
yy 〈λxx

T 〉
)

(6.16)

3Possibly the simplest of such constraints could be introduced by considering a soft constraint
on the variances of the conditional firings, which amends (6.13) with an anti-Hebbian term
−A〈λxxT 〉 ∈ R

|y|×|x| such that A º 0 ∈ R
|y|×|y|.
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where Σxx
def
= 〈xxT 〉. Clearly, (6.16) is decomposable as a combination of the

stochastic Hebbian and anti-Hebbian terms, with the weighting coefficients de-
termined by the second-order moments of the firings and input stimuli. Addi-
tionally, it is easy to see that the parenthesized factor at the correction of the
Hebbian term in (6.16) corresponds to the Schur compliment of the joint corre-

lation Σ̃
def
= 〈[x y] [x y]T 〉p(x,y) (see e.g. von Mises (1964)). This may be viewed as

a conditional covariance Σ̃x|y of the decoder expressed from the joint Gaussian

model p̃xy ∼ Nxy(0, Σ̃), resulting in

∆W ∝ D̃〈λxx
T 〉 + Σ−1

yy ΣyxΣ̃x|y, Σ̃x|y
def
= Σxx − ΣxyΣ

−1
yy Σyx. (6.17)

(cf Linsker’s as-if Gaussian bound (1.16)). From (6.13) and (6.17) we see that a
simple fixed-rate Hebbian update would generally be a suboptimal approximation
of both the exact gradient of the bound Ĩ(x, y) and its more conventional fixed-
rate approximation.

6.3 Fisher Information and Mutual Information

Now we will briefly review two classes of methods using the Fisher Information
criterion in order to approximate the exact mutual information. The first class of
methods which we consider proposes to optimize an approximation of a specific
bound on I(x, y), which is conveniently derived by applying the Cramer-Rao and
the data processing inequalities (Brunel and Nadal (1998)), and computing the
limit for |y| → ∞. The same result may be obtained by considering a numerical
approximation of the “local mutual information” Ix = 〈log p(y|x)/p(y)〉p(y|x) for
|y| → ∞, and integrating the approximation over the sources p̃(x) (Kang and
Sompolinsky (2001)).

The second method is inspired by Szummer and Jaakkola (2002) and Cor-
duneanu and Jaakkola (2003), who also propose to approximate the local infor-
mation IR(x, y) for each small region of the source space R ⊂ Rx,R → 0 (cf
Kang and Sompolinsky (2001)), but use different numerical relaxations, which
generally leads to a different optimization surface. Specifically, their approxima-
tions do not depend on the population sizes |y|, which suggests better convergence
properties for low and intermediate values of |y|. Though the original results of
Szummer and Jaakkola (2002) and Corduneanu and Jaakkola (2003) are applied
in the different context of semi-supervised learning, we show that their approach
may be considered as a general alternative for computing an approximate lower
bound on the exact mutual information I(x, y).

It turns out that both approximations we discuss here involve computations
of the Fisher Information criterion. To differentiate between the methods, we
will refer to the method of Szummer and Jaakkola (2002) and Corduneanu and
Jaakkola (2003) as the local approximation of mutual information, since the fun-
damental assumption used in the derivations is the locality of the regions (the
Fisher Information matrix arises as a result of a specific expansion of the encoder
distribution). In contrast, we will refer to the approach of Brunel and Nadal
(1998) as Fisher approximation of mutual information (or Fisher criterion), since
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the term arises as the result of applying the fundamental Cramer-Rao inequality.
For both of the considered methods, we outline the corresponding learning rules
for the considered case of a sigmoidal network.

6.3.1 Fisher Approximation of Mutual Information

Let us assume that the stochastic firings of the output units are conditionally
independent given the source pattern, i.e. p(y|x) =

∏|y|
i=1 pi(yi|x), where all

pi(yi|x) ≡ p(yi|x) are in the same parametric family. If we view x ∈ R
|x| as a

fixed parameter, and the vector of binary spikes y ∈ {±1}|y| – as |y| independent
identically distributed samples from p(yi|x), we may apply the results of the the-
ory of statistical parameter estimation (see e.g. Cramer (1946)) to bound the
mutual information I(x, y) (Brunel and Nadal (1998)).

Indeed, let x̂ ∈ R
|x| be a statistical estimator of the input stimulus x obtained

from the stochastic neural firings y. Generally, we may assume that the sources,
the encodings, and the estimators form a Markov chain x → y 7→ x̂, where
p(x̂|y) ∼ δ(x̂ − x̂(y)) and p(y|x) is factorized in y. It is well known that if the
estimator x̂(y) is unbiased, i.e. 〈x̂(y)〉p(y|x) = x, then its covariance may be bounded
according to the Cramer-Rao inequality, i.e.

〈

(x̂(y) − x) (x̂(y) − x)T
〉

p(y|x)
º Fx ∈ R

|x|×|x|, (6.18)

where A1 º A2 indicates that A1 − A2 is positive semi-definite, and

Fx = {Fij(x)}
def
= −

{
〈∂2 log p(y|x)/∂xi∂xj〉p(y|x)

}
(6.19)

≡
{

〈∂ log p(y|x)/∂xi · ∂ log p(y|x)/∂xj〉p(y|x)

}

∈ R
|x|×|x|

(6.20)

is the Fisher Information matrix (see e.g. Cramer (1946), Cover and Thomas
(1991), Johnson (2003)). It is easy to see that we may equivalently express the
bound (6.18) as

cov(x̂|x) º Fx ∈ R
|x|×|x|. (6.21)

Here cov(x̂|x) is the conditional covariance of p(x̂|x), and we have used the fact
that for unbiased estimators 〈x̂〉p(x̂|x) = 〈x̂(y)〉p(y|x) = x.

If the estimator x̂(y) is also efficient, its covariance saturates the Cramer-
Rao bound, which results in an upper bound on the entropy of the conditional
distribution H (p(x̂|x)) ≤ H(Nx(0, F−1

x )). The bound follows from the well-known
fact that for a fixed covariance, the maximum entropy distribution is a Gaussian
(see e.g. Feller (1971), McEliece (1977)). We may now obtain a lower bound on
the mutual information

I(x, y) ≥ H(x̂) +
1

2
〈log |Fx|〉p̃(x) + const, (6.22)

where we have used the data processing inequality I(x, y) ≥ I(x, x̂) for the con-
sidered chain x → y 7→ x̂.
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Unfortunately, despite the fact that the mapping y 7→ x̂ is deterministic,
exact computation of the entropy of statistical estimates H(x̂) in the objective
(6.22) is in general computationally intractable. Brunel and Nadal (1998) show
that under some assumptions we may assume H(x̂) ≈ H(x), which leads to the
approximation

I(x, y) & ĨF (x, y)
def
= H(x) +

1

2
〈log |Fx|〉p̃(x) + const (6.23)

(specifically, this approximation applies for |y| → ∞ when the estimators are
sharply peaked around the mean values). Brunel and Nadal also show that under
similar assumptions, (6.23) may be used as an approximation of I(x, y) inde-
pendently of the bias of the estimator. Note that since H(x) is independent of
the parameters of p(y|x), maximization of (6.23) is equivalent to maximization
of (6.22) where the generally intractable term H(x̂) (entropy of the mixture) is
ignored.

6.3.1.1 Sigmoidal Activations

It is straight-forward to see that for the considered sigmoidal activations (6.1),
each element Fij(x) of the Fisher Information matrix Fx = {Fij(x)} is given by

Fij(x) =

|y|
∑

l=1

wliwljσ(wT
l x + bl)(1 − σ(wT

l x + bl)), i, j = 1, . . . , |y|, (6.24)

where wT
l is the lth row of the synaptic weights W ∈ R

|y|×|x|. Then we may express
the Fisher approximation of the mutual information (6.23) as

ĨF (x, y) ∝
M∑

m=1

log
∣
∣WT

(
I − Dλxm

)
W

∣
∣ + const, (6.25)

where the constant incorporates the remaining terms which have no effect on
the optimization. Again, I − Dλxm

∈ R
|y|×|y| is the conditional covariance of the

stochastic spikes (given by expression (6.5)).
By computing the matrix derivatives of (6.25) for W ∈ R

|y|×|x| and b ∈ R
|y|

and performing some straight-forward algebraic manipulations, we get

∂ĨF

∂W
=

1

4M

M∑

m=1

{

2(I − Dλxm
)WAxm

− Cxm
(I − Dλxm

)λ(x(m))
(
x(m)

)T
}

∈ R
|y|×|x|.

(6.26)

Here λ(x(m))
def
= 〈y〉p(y|x(m)) ∈ R

|y| is a vector of the expected firing at the encoding
layer (see expression (6.4)), and

Axm
=

(
WT

(
I − Dλxm

)
W

)+
∈ R

|x|×|x| (6.27)

Cxm
= diag

(
WAxm

WT
)
∈ R

|y|×|y|, (6.28)
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where A+ is the pseudo-inverse4 (so that AA+A = A). Analogously,

∂ĨF

∂b
= −

1

4M

M∑

m=1

Cxm
(I − Dλxm

)λ(x(m)) ∈ R
|y| (6.29)

with the similar definitions of λ(x(m)) ∈ R
|y| and Cxm

∈ R
|y|×|y|.

It is interesting to note that for the square model with |x| = |y|, optimization
of (6.25) leads to

∆W = 2W−T − 〈λxx
T 〉, (6.30)

which (apart from the coefficient at the inverse weight – redundancy term) has the
same form as the learning rule of Bell and Sejnowski (1995) derived for the invert-
ible channel with p(y|x) ∼ δ(y−σ(x)). If the encoded representations are overcom-
plete (i.e. |x| < |y|) and the variable rate cov(y|x(m)) = I−Dλxm

is approximated
by the 1st-order Taylor expansion around zero receptive fields, the redundancy
term in (6.30) is replaced by the transposed pseudo-inverse W(WT W)−1 ∈ R

|y|×|x|.
Notably, the resulting learning rule (6.26), (6.29) is non-local (as it involves com-
putations of the inverses), and the weight updates (6.26), (6.30) have no Hebbian
terms.

More importantly, one can see that optimization of the Fisher approximation
of the mutual information (6.25) may be problematic when WT (I − Dλxm

)W ∈
R

|x|×|x| is rank-deficient, which complicates applicability of the method for a va-
riety of tasks involving relatively low-dimensional encodings of high-dimensional
input stimuli. Apart from instability of numerical optimization on ĨF (y, x) (which
we have partially addressed by computing the pseudo-inverses, rather than the
exact inverses in (6.27), (6.28)), the conceptual problem of optimizing the cri-
terion ĨF (y, x) is the weakness of the approximate bound for |y| < |x| (in most
cases, such channel choices would violate the fundamental assumptions of the
approximation). Additionally, from (6.25) we may note that the approximate
bound ĨF (x, y) may become loose with the decrease in the conditional variance
of the stochastic firings. Intuitively, this happens because the directions of low
variations in the code space swamp the optimized volume of the |x|-dimensional
manifold (see (6.25)), thus leading to a drop in the determinant.

6.3.2 Local Approximation of Mutual Information

Here we describe an alternative approximation of mutual information I(x, y). It
is inspired by recent work of Szummer and Jaakkola (2002) and Corduneanu and
Jaakkola (2003), who approximate information content I(x ∈ R, y) in infinitely
small local regions R ⊂ Rx, and apply the approximations as regularizers for
semi-supervised classification. Here we show that their method may in fact be
used to obtain an alternative approximate lower bound on mutual information.

Consider the model r → x → y, where r defines a local region in the data
space, so that Rr ⊂ Rx. The local information Ir(x, y) in the region r may be

4We make a recourse to computing the pseudo-inverse in order to handle the singularity of
the gradient ∂ĨF (x, y)/∂W for rank-deficient Fisher Information matrices (which happens for
example when |x| > |y|). Note that A+ = A−1 ∈ R

|x|×|x| when rank(A) = |x|.

126



defined as

Ir(x, y)
def
=

∫

Ry

∫

Rr

p(x|r)p(y|x) log
p(y|x)

p(y|r)
dx dy, (6.31)

where Ry is the code space. The conditional p(x|r) may generally be computed
as p(x|r) ∝ p(x)I(x ∈ Rr) [I defines an indicator variable], where p(x) is the
distribution of the source variables. By computing the 2nd-order Taylor expan-
sion of p(y|x) around p(y|〈x〉p(x|r)) and performing some algebraic manipulations,
Corduneanu and Jaakkola (2003) show that the local information (6.31) may be
approximated as

Ir(x, y) =
1

2
tr

{

cov(x|r)F〈x〉p(x|r)

}

+ O(R3
r), (6.32)

where F〈x〉p(x|r)
is the Fisher Information matrix (6.19) computed at the local mean

〈x〉p(x|r).
If the local regions Rr are symmetric and centered at the training patterns

{x} then we may define cov(x|r)
def
= vx|rI|x|, and up to a constant pre-factor we

obtain5

〈Ir(x, y)〉p(r) ≈ vx|r〈tr {Fx}〉p̃(x) (6.33)

(approximation is accurate for small regions Rr, i.e. small variances vx|r). Again,
p̃(x) is the empirical distribution. We also note that when expression (6.33) is
coupled with the minimization of the sum-of-squared error, the resulting objective
is equivalent (to first order) to minimization of the sum-of-squared error with
noise, i.e. when the source distribution is given by p(x) =

∑M
m=1 Nx(x

(m), vx|rI|x|)
for the training set {x(m)|m = 1, . . . ,M}, and the encoding distribution p(y|x) is
approximated around p(y|x(m)) (see Bishop (1995)).

We will now show that (6.33) may be used to derive an approximate lower
bound on the global mutual information I(x, y). To do so, we will outline a gen-
eral relation between I(x, y) and the local average 〈Ir(x, y)〉p(r) for the considered
model p(r, x, y) = p(r)p(x|r)p(y|x). From the chain rule on mutual information
(see e.g. Cover and Thomas (1991)), we may express the joint mutual infor-
mation between the code and the source vectors (with the corresponding local
partitionings) as

I({r, x}, y) = I(r, y) + I(x, y|r). (6.34)

On the other hand, for the considered chain model we get

I({r, x}, y) = H(y) − H(y|x, r) = I(x, y), (6.35)

where I({r, x}, y) is the amount of information which the codes y contain about
the sources and the regions x, r jointly. From (6.31), (6.33), and the definition of
the conditional mutual information

I(x, y|r)
def
= H(y|r) − H(y|x, r) = 〈Ir(x, y)〉p(r), (6.36)

5This result may be generalized for the case of infinitely small local regions Rr, provided
that the covering of the data space satisfies specific properties. For example, (6.33) applies
if Rx consists of axis-parallel cubes Rr → 0 centered at the axis-parallel lattice points, see
Corduneanu and Jaakkola (2003) for details.
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it is clear that

I(x, y) = I(r, y) + 〈Ir(x, y)〉p(r) ' vx|r〈tr {Fx}〉p̃(x)
def
= ĨL(x, y), (6.37)

where the slackness of the bound is stipulated by the non-negativity of I(r, y).
Note that the variance vx|r is a constant parameter which does not affect the
optimization surface for the encoding distribution p(y|x). Note that for the special
case of one-dimensional input stimuli, the approximation (6.37) reduces to the
well-known scalar Fisher criterion optimized by a number of the currently used
approaches to population coding (e.g. Pouget et al. (1998), Zhang and Sejnowski
(1999), Bethge et al. (2002)).

Despite the apparent similarity of the Fisher approximation criterion ĨF (x, y)
(expression (6.23)) and the local criterion ĨL(x, y) (expression (6.37)), one can see
that in general the methods result in different fixed points. Indeed, if λi(Fx) is
the ith eigenvalue of Fx ∈ R

|x|×|x| then the extrema of ĨF (x, y) must satisfy

∂ĨF (x, y)/∂W =

〈
|x|

∑

i=1

λ−1
i (Fx)

∂λi(Fx)

∂W

〉

p̃(x)

= 0 ∈ R
|y|×|x|. (6.38)

On the other hand,

∂ĨL(x, y)/∂W =

〈
|x|

∑

i=1

∂λi(Fx)

∂W

〉

p̃(x)

= 0 ∈ R
|y|×|x|. (6.39)

Clearly, both (6.38) and (6.39) hold simultaneously if ∂λi(Fx)/∂W = 0 for all
eigenvalues {λi|i = 1, . . . , |x|}, and all training patterns {x(m) ∈ R

|x||m = 1, . . . ,M}.
However, it is clear that despite positive semi-definiteness of Fx ∈ R

|x|×|x|, the cri-
teria ĨF (x, y) and ĨL(x, y) will generally give rise to different solutions.

Finally, it is important to note that in contrast to the Fisher approximation
ĨF (x, y) of Brunel and Nadal (1998), the local approximation ĨL(x, y) is also de-
fined for |x| > |y|. This suggests that in general numerical optimization of (6.37)
may be more stable than optimization of (6.23) for small population sizes. Opti-
mization of the local approximation is also less computationally demanding, since
by optimizing ĨL(x, y) we avoid computing the inverse of the Fisher Information
matrix. Moreover, as we will see, for the considered logistic parameterization of
the encoder distribution, numerical ascent on ĨL(x, y) may often lead to better
values of the exact mutual information I(x, y) (which we will compute for small
models for the purpose of testing).

6.3.2.1 Sigmoidal Activations

By analogy with Section 6.3.1, we may derive the local approximation of I(x, y)
for the considered sigmoidal encoder model (6.1). Up to the constant pre-factor
vx|r, the local approximation is given by

ĨL(x, y) ∝
M∑

m=1

tr
{
WT

(
I − Dλxm

)
W

}
, (6.40)
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where I − Dλxm
∈ R

|y|×|y| is given by expression (6.5). Note that in contrast to
the previously discussed Fisher approximation for sigmoidal activations (6.25),
the objective (6.40) is finite even when Fx ∈ R

|x|×x is rank-deficient. This gen-
erally leads to a more stable behavior of the numerical optimization procedures
performing an ascent on ĨL(x, y).

The gradients for the encoder parameters in this case are given by

∂ĨL

∂W
∝

1

4M

M∑

m=1

{

2(I − Dλxm
)W − diag(WWT )(I − Dλxm

)λ(x(m))
(
x(m)

)T
}

∈ R
|y|×|x|

(6.41)

∂ĨL

∂b
∝ −

1

4M

M∑

m=1

diag(WWT )(I − Dλxm
)λ(x(m)) ∈ R

|y|, (6.42)

where diag(WWT ) ∈ R
|y|×|y| is the diagonal matrix of the squares of L2-norms

‖wi‖
2 of the encoder weight vectors. Note that symbolically the only difference of

the gradients of the local approximation ĨL(x, y) (expressions (6.41) and (6.42))
from the gradients of the Fisher approximation ĨF (x, y) ((6.26) and (6.29)) is
multiplication by the non-local term Axm

∈ R
|x|×|x| in ∂ĨF /∂W and Cxm

∈ R
|y|×|y|

(see expressions (6.27), (6.28)).

6.3.3 Constraints on the Encoder Parameters

Interestingly, from the definitions (6.25), (6.40) of the Fisher and local approx-
imations of the mutual information for the considered encoder model, one can
see that unconstrained optimization for the encoder weights W ∈ R

|y|×|x| does
not necessarily lead to their divergence. To see this, consider the simple case
of a scalar input stimulus (e.g. x ∈ R may correspond to the angle of saccadic
eye movements or direction of head motion) encoded by a single spiking neuron
y ∈ {−1, 1}. The only synaptic weight for this simple model would be given by
w ∈ R (for clarity, we ignore the bias b). From (6.40) and the definition of the
conditional variance (6.5), it is clear that

ĨL(x, y) ∝
〈
w2/(2 + e−wx + ewx)

〉

p̃(x)
≥ 0, (6.43)

where p̃(x) is the empirical distribution. Assume that ∃ǫ > 0 such that for all
training patterns |x(m)| > ǫ. Then by computing the limit of (6.43) for |w| → ∞
we can see that the approximation ĨL(x, y) is minimized for the divergent weight
norm |w|. (Note that finding the analytical solution for w which maximizes
(6.43) would require solving a transcendental equation even for this simple model
with |x| = |y| = 1). Similar intuition applies in the case of Brunel and Nadal’s
approximation6 ĨF (x, y).

Analogously, for the high-dimensional case we may note that the conditional
variances of the stochastic firings are functions of the singular values L ∈ R

|x|×|x|

6Consider the case when |x| = |y| = 1. For the Fisher approximation we note that from

Jensen’s inequality ĨF (x, y) = 〈log |Fx|〉p̃(x) ≤ log〈|Fx|〉p̃(x)
def
= ÎF (x, y). It is easy to see that

lim|w|→∞ ÎF (x, y) → −∞. Since ĨF (x, y) ≤ ÎF (x, y), we get lim|w|→∞ ĨF (x, y) → −∞.
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of the encoding weights W ∈ R
|y|×|x|. For the considered choice of the encoding

distributions, higher weight magnitudes would generally lead to lower conditional
variances of the firings, i.e. the growth in ‖W‖F ≡ tr1/2{WWT} in the approxi-
mation ĨL(x, y) would be compensated by a decrease in I − Dλxm

∈ R
|y|×|y|. This

suggests generally non-trivial changes in ÎL(x, y) with an increase in the weight
magnitudes (cf Gaussian channels with the isotropic noise).

Despite the observation that unconstrained optimization of ĨF (x, y) and ĨL(x, y)
would not necessarily lead to indefinite growth of the encoder weights W (at least,
for the considered channel), in many cases we may still be interested in constrain-
ing the magnitudes of the synaptic weights or the conditional variances of the
firings. This may be motivated, for example, by neuro-physiological constraints
on the channel, or technical limitations on precision. Possibly one of the simplest
ways of introducing implicit constraints on the encoder parameters for the con-
sidered channels is to penalize large Frobenius norms ‖W‖F , or small conditional
variances var(yj|x) = 1 − λ2

j(x
(m)) of the firing units. It is straight-forward to

see that the gradients of the penalty terms would in this case be given as −MW
and −M〈λxx

T 〉 ∈ R
|y|×|x| (which is the anti-Hebbian term) respectively, where

M º 0 ∈ R
|y|×|y| is a fixed positive semi-definite matrix. However, while being

conceptually and computationally simple, the choice of the penalty constants M
may be rather heuristic. A more rigorous approach would involve optimization
of the dual Lagrangian

L̃
def
= sup

W

{L(W, M)}
def
= sup

W

{ĨF (x, y) − mT f(W)}, (6.44)

where f(W) ≥ 0 defines a set of the inequality constraints, and m ≥ 0 is a
vector of Lagrange multipliers (see e.g. Bertsekas (1996), Boyd and Vandenberghe
(2004)), which requires further numerical approximations when the dual cannot
be expressed as an analytical function of W alone (e.g. Rubinov and Yang (2003)).

Alternatively, we may impose explicit construction constraints on the encoder
parameters W ∈ R

|y|×|x|, for example by constraining the weights to a unit hy-
persphere. For example, for |y| ≥ |x| we may define W = W̃(W̃T W̃)−1/2, where
W̃ ∈ R

|y|×|x| is an arbitrary matrix such that rank(W̃) = |y|, and re-compute the
derivatives for W̃ (the case when |x| ≥ |y| is analogous). We may also bound each
synaptic weight, so that wij ∈ [−ω, ω], for example by imposing parametric con-

straints wij
def
= φ(aij), where φ(a) : R → [−ω, ω]. Presumably, such constraints

on the individual synaptic weights are more biologically intuitive; moreover, they
do not require non-local computations. Optimization of ĨF (x, y) or ĨL(x, y) with
respect to W = {wij} ∈ R

|y|×|x| would then need to be replaced by optimization
with respect to A = {aij} ∈ R

|y|×|x|, with the gradients expressed e.g. by

∂ĨF (x, y)/∂A = ∂ĨF (x, y)/∂W ◦ ∇Aφ(A) ∈ R
|y|×|x|. (6.45)

Here A1 ◦ A2 denotes the element-wise product, and ∇Aφ(A)
def
= {∂φ(aij)/∂aij} ∈

R
|y|×|x|. Interestingly, we can empirically demonstrate that in some cases (e.g.

when the input stimuli x ∈ R
|x| are sufficiently close to 0|x|), this choice of the

constraint on W ∈ R
|y|×|x| pushes the optimal weights towards the corners of the
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hypercube [−ω, ω]|y|×|x|, thus suggesting a straight-forward approach to unsuper-
vised information-theoretic training of ising perceptrons (see e.g. Penney and
Sherrington (1993), Rosen-Zvi and Kanter (2001)).

6.4 Variational Lower Bound vs. Fisher and Local

Approximations of Mutual Information

Since ĨF (x, y) and ĨL(x, y) are not proper lower bounds on the mutual informa-
tion, it is difficult to analyze their tightness or compare them with the generic
variational bound (2.2). To illustrate a relation between the approaches, we may
consider a Gaussian decoder q(x|y) ∼ Nx(µy;Σ), which transforms the variational
bound into

Ĩ(x, y) = −
1

2

〈
tr

{
Σ−1(x − µy)(x − µy)

T
}〉

p(y|x)p̃(x)
+

1

2
log |Σ−1| + ć. (6.46)

Here ć incorporates H(x) and other constants which do not affect the optimization
surface for the encoder parameters, and Σ ∈ R

|x|×|x| is a function of parameters
of the conditional p(y|x).

Clearly, if the log eigenspectrum of the inverse covariance of the decoder is
constrained to satisfy

|x|
∑

i=1

log li(Σ
−1) =

|x|
∑

i=1

〈log li(Fx)〉p̃(x), (6.47)

where {li(Σ
−1)} and {li(Fx)} are eigenvalues of Σ−1 and Fx respectively, then

the lower bound (6.46) reduces to the objective (6.23) amended with the average
quadratic reconstruction error

Ĩ(x, y) = −
1

2

〈
tr

{
Σ−1(x − µy)(x − µy)

T
}〉

p(y|x)p̃(x)
︸ ︷︷ ︸

reconstruction error

+
1

2
〈log |Fx|〉p̃(x)
︸ ︷︷ ︸

Fisher criterion

+ć. (6.48)

Arguably, it is due to the subtraction of the non-negative quadratic term that
(6.46) remains a general lower bound independently of the parameterization of
the model and spectral properties of Fx ∈ R

|x|×|x|. We may find an analogous
relation for the local approximation of mutual information Ĩ(x, y) by constraining
the log eigenspectrum of Σ−1 to satisfy

|x|
∑

i=1

log li(Σ
−1) = vx|r

|x|
∑

i=1

〈li(Fx)〉p̃(x), (6.49)

where vx|r is a constant variance of the symmetric regions (see the discussion in
Section 6.3.2). It is easy to see that in this case we get

Ĩ(x, y) = −
1

2

〈
tr

{
Σ−1(x − µy)(x − µy)

T
}〉

p(y|x)p̃(x)
︸ ︷︷ ︸

reconstruction error

+
1

2
〈tr {Fx}〉p̃(x)
︸ ︷︷ ︸

local criterion

+ć. (6.50)
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One potential advantage of the variational approach over the Fisher approx-
imation of mutual information is the fact that the optimized objective Ĩ(x, y)
remains a proper bound on I(x, y) independently of the modeling assumptions.
This contrasts with the approximations of Brunel and Nadal (1998) and the re-
lated methods of Kang and Sompolinsky (2001) and Hoch et al. (2003), where the
accuracy is strongly influenced by the size of the code space. While the method
based on local approximations of Szummer and Jaakkola (2002), Corduneanu and
Jaakkola (2003) helps to avoid some of the constraints on the encoding mappings
(specifically, it is applicable for |y| < |x|), it may be rather difficult to justify from
the information-theoretic viewpoint (as by introducing the noise into the empir-
ical distribution we decrease the information content between the codes and the
original sources).

Another principal advantage of the variational approach to information max-
imization is the flexibility in the choice of the variational decoder. Intuitively, if
the Fisher Information matrices are nearly singular, both (6.23) and (6.48) may
be quite weak. However, by relaxing (6.47) and imposing full-rank constraints
on the covariances of the variational decoders, the variational bound may be sig-
nificantly strengthened. Moreover, as we showed in Section 6.2.1, by imposing
specific constraints on the variational decoder, we can derive an iterative learn-
ing rule, which only requires local computations (such as evaluations of weighted
Hebbian and anti-Hebbian terms). As discussed in Section 6.2.1, this may lead
to an arguably more biologically plausible learning.

6.5 Demonstrations

Variational IM vs Fisher and Local Approximations

As we mentioned in Section 6.4, due to the fact that the Fisher and the local
approximation criteria are not proper bounds on I(x, y), it is difficult to justify
comparisons of the generic lower bound Ĩ(x, y) with ĨF (x, y) and ĨL(x, y). In-
deed, while we can generally justify comparisons of proper bounds (as a tighter
bound would imply a smaller gap from the true unknown functional for a specific
parameter subspace), it is not always easy to judge on accuracy of approxima-
tions of unknown underlying functionals. Generally, this complicates empirical
comparisons of the described learning methods for large scale problems.

In order to gain intuition on how the approximate information-maximizing
methods influence the true underlying objective I(x, y), we considered a low-scale
problem (so that the mutual information I(x, y) could be computed exactly). We
were particularly interested to see whether or not maximization of the generic
lower bound Ĩ(x, y) could lead to consistent improvements in the true mutual
information I(x, y) for the considered conditionally factorized channel (6.1). To
answer this question, we computed the exact value of I(x, y) at each iteration of
the variational IM learning, where the encoder parameters W ∈ R

|y|×|x|, b ∈ R
|y|

were obtained by maximizing the bound Ĩ(x, y). We compared this with the
changes in the exact mutual information under maximization of the Fisher ap-
proximation criterion ĨF (x, y) of Brunel and Nadal (1998), and the local approx-
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Figure 6.1: Changes in the exact mutual information I(x, y) for parameters of the

encoder p(y|x) obtained by maximizing the variational lower bound Ĩ(x, y), the Fisher
information criterion ĨF (x, y), and the local approximation criterion ĨL(x, y). The
number of training stimuli M = 20. The results are averaged over 30 runs from
random parameter initializations. Left: |x| = 3, |y| = 5 Right: |x| = 7, |y| = 5.

imation criterion ĨL(x, y) motivated in Section 6.2.1 and inspired by Corduneanu
and Jaakkola (2003). To ensure that the true mutual information I(x, y) could
indeed be computed exactly, we restricted the dimensionality of the response vari-
ables |y|. In order to illustrate the effects which the codesize |y| could have on
the performance, we considered the cases when |y| < |x| and |y| > |x|.

Figure 6.1 illustrates changes in the exact mutual information I(x, y) with it-
erations of the scaled conjugate gradients (SCG) optimization on Ĩ(x, y), ĨF (x, y),
and ĨL(x, y). The variational decoder q(x|y) of the generic lower bound was cho-
sen to be an isotropic linear Gaussian with the unconstrained optimal weights
(see expression (6.11) and the discussion in Section 6.2.2). The plot shows the
mean values and error bars on I(x, y) for 30 runs from different initializations.
The initial settings of the encoder parameters were the same for all the consid-
ered learning methods. The dimensionality of the code space was chosen to be
|y| = 5. The training stimuli x ∈ R

|x| were sampled from x ∼ Nx(0, I|x|) and
centered, where we considered |x| = 3 (Figure 6.1 (left)) and |x| = 7 (Figure
6.1 (right)). The results are shown for M = 20 training patterns. Moreover,
we imposed additional parametric constraints on each synaptic weight, so that
wij = σ(aij) − 0.5 ∈ (−0.5, 0.5). (The gradients for this case could be easily
obtained from (6.45)). The auxiliary parameters {aij} were initialized at random
as aij ∼ Na(0, 0.1).

As we can see from (Figure 6.1 (left)), all three methods tended to lead to con-
sistent improvements in the true mutual information for |x| ≤ |y|. The variational
approach usually resulted in higher values of I(x, y) after just a few training itera-
tions, and typically converged to higher values of I(x, y). The local approximation
criterion described in Section 6.2.1 may be characterized by a rapid convergence
and low variance of the mutual information estimates, which may be explained by
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the smoothness of the optimized surface defined by ĨL(x, y). For the considered
case of overcomplete representations, the Fisher approximation criterion ĨF (x, y)
typically resulted in a stable convergence to relatively high values of I(x, y).

In the case of undercomplete binary representations (i.e. |x| > |y|), optimiza-
tion of the Fisher criterion ĨF (x, y) was numerically unstable and often led to
no visible improvements of mutual information I(x, y) over its starting values at
initializations. This is not surprising, as the objective ĨF (x, y) (and its gradi-
ents) are undefined for singular Fisher Information matrices (note that in the
considered case rank(Fx) ≤ min{|x|, |y|} = |y|, i.e. Fx ∈ R

|x|×|x| is rank-deficient).
Further approximations aimed at handling singularities of the gradients (see Sec-
tion 6.3.1) could lead to slight improvements in I(x, y), though their dynamics
was rather inconsistent. In practice, this could often be characterized by non-
monotonic changes in I(x, y) with the number of SCG iterations on ĨF (x, y). Not
surprisingly, after averaging over a number of independent runs, optimization of
ĨF (x, y) often led to high variances of the mutual information evaluations (Figure
6.1 (right)). In contrast, optimization of the local approximation criterion Ĩ(x, y)
and the variational lower bound Ĩ(x, y) typically led to consistent improvements
in the exact mutual information. Again, while learning by maximizing the local
approximations often resulted in quicker convergence, the variational IM applied
to the considered channel usually led to consistently higher values of I(x, y) after
a small number of training iterations.

Finally, we note that the imposed constraint on the individual weights {wij}

resulted in a hard upper bound on ‖W‖F ≤ ω
√

|y||x|. The comparison of the
methods is fair in the sense that the obtained results are not simply influenced
by the weight re-scalings. Other types of constraints (e.g. soft constraints on
the conditional variances of the stochastic firings) lead to qualitatively similar
relations between the learning methods (see Agakov and Barber (2004b)). While
the considered problem is low-scale, the observed relations between the learning
methods help to understand the effects which optimization of the approximate ob-
jective criteria may have on the true mutual information. Specifically, the results
confirm the intuitive limitations of the commonly used Fisher approximations of
I(x, y).

Hypercubic Constraints and Discrete-Valued Weights

It is interesting to note that by imposing hypercubic constraints on the encoder
weights, i.e. constraining each synaptic weight wij to lie in a symmetric region
[−ω, ω], and carefully re-scaling the input stimuli, we may often observe the
situation when the optimal weight parameters W ∈ [−ω, ω]|y|×|x| obtained by
maximizing any of the three objective criteria Ĩ(x, y), ĨF (x, y), and ĨL(x, y) lie very
close to the corners of the hypercube. Not surprisingly, this behavior is strongly
influenced by the cube’s size ω, dimensionality of the source space |x|, and the
moments of the source distribution p̃(x) (as all these entities influence the effective
activation fields of the output units). Here we will not aim at characterizing the
relation theoretically, but demonstrate the situation when the effect occurs.
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Figure 6.2: Optimal encoder weights W ∈ R
|y|×|x| obtained by maximizing Ĩ(x, y),

ĨF (x, y), and ĨL(x, y). Here |x| = 3, |y| = 5, and M = 20. The white squares
correspond to the settings wij ≈ 0.5. The black squares correspond to the settings
wij ≈ −0.5. For the illustrated case, maxij{||wij| − 0.5|} ∼ O(10−4).

Specifically, we will consider the settings of the previous set of experiments,
where |x| = 3, |y| = 5, the weights are constrained as wij = σ(aij) − 0.5 ∈
(−0.5, 0.5) for some real-valued parameters aij, and the sources are sampled as
x ∼ Nx(0, 0.7I). Optimization of the three objectives with respect to the auxiliary
parameters A = {aij} ∈ R

|y|×|x| results in the nearly discrete-valued weights
W ∈ R

|y|×|x| shown on Figure 6.2, where maxi,j ||wi,j| − 0.5| ∼ O(10−4). Figure
6.3 (left) shows the changes in the exact mutual information I(x, y) computed at
the parameters obtained by maximizing Ĩ(x, y), ĨF (x, y), and ĨL(x, y). Note that
the resulting weights have nearly identical norms, i.e. effects which the norm
rescalings have on the objective criteria may safely be ignored. Figure 6.3 (left)
shows typical changes in the exact mutual information I(x, y) computed for the
discrete-valued weight parameters W ∈ {−0.5, 0.5}|y|×|x| around WI , WF , and
WL (which are the optimal weights obtained by maximizing Ĩ(x, y), ĨF (x, y), and
ĨL(x, y) respectively). As we see from the plot, the variational IM maximizing the
bound Ĩ(x, y) results in highest values of the exact I(x, y). (Additionally, it turns
out that in the considered case the weight WI ∈ R

|y|×|x| gives rise to one of the
equivalent global optima of the exact I(x, y) computed for the 215 combinations
of the discrete weights {−0.5, 0.5}|y|×|x|).

The result is potentially interesting, as it suggests the existence of encoder
models which may be used to transform the combinatorial search over discrete-
valued parameters to a continuous optimization problem. It is indeed intuitive
that by maximizing the exact I(x, y), the optimal encoder model would encourage
spread-out representations in the code space. However, as we showed in Section
6.3.3, for the considered parameterization of the encoder and the considered con-
straints on the parameters, the weights cannot grow indefinitely. This suggests a
curious relation between dimensionality of the sources |x|, the weight range de-
fined by ω, the scalings of the source patterns, and the observed weight saturation
effects, which will be interesting to investigate in the future.
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Figure 6.3: Exact mutual information as a function of (approximately) discrete-valued

weights. Left: typical changes in the exact I(x, y) under maximization of Ĩ(x, y),
ĨF (x, y), and ĨL(x, y) for the auxiliary parameters {aij}. Right: values of the ex-
act mutual information computed at W = {−0.5, 0.5}|y|×|x| around the optimal Wi,
WF , and WL. The x-axis corresponds to the decimal representations of the binary
encodings of the discrete weight vector w ∈ {−0.5, 0.5}|x|×|y| obtained by flattening
W ∈ R

|y|×x.

Variational IM: Stochastic Representations of the Digit Data

Finally, we have applied the variational IM method to stochastic coding of visual
patterns for the case when the number of the input stimuli |x| significantly exceeds
the number of the spiking units |y|. (The problem of coding in this case may be
viewed in the context of stochastic compression). Our motivation here was to
check whether the variational approach to information maximization could lead to
at least vaguely interpretable firing frequencies of small groups of neurons for the
considered biologically-inspired channel parameterization; specifically, we were
interested in checking whether frequency of stochastic firings of the encoding units
could in some sense be representative of different aspects of the visual stimuli.
(The stochasticity was an artifact of the constrained channel parameterization, as
specified by the encoding distribution (6.1)). We were also interested to see how
different firing frequencies could affect reconstructions of input stimuli obtained
by applying the variational decoder.

Note that for the considered case the information-theoretic formulation is par-
ticularly attractive, as it allows to impose explicit biologically-inspired constraints
on parameters of the encoding mappings. Additionally, in the exact formulation
learning of encodings is entirely unsupervised, which is particularly attractive
from the biological perspective. Our method is an approximation of the exact
case, with a specific choice of the variational distribution. In our experiments we
used the simplest form of the Gaussian decoder discussed in Section 6.2.2. After
numerical optimization for p(y|x) and q(x|y) with an explicit constraint on the
variance of the conditional firings (enforced by the penalty term m = 0.2, see
Section 6.3.3), we applied the variational decoder to perform reconstruction of

136



(a) (b) (c)

Figure 6.4: Stochastic binary encodings of the continuous input stimuli. (a): a
subset of the original visual stimuli. (b): 30 samples from the corresponding encoding
distribution p(y|x) for |y| = 10 spiking units (black and white dashes correspond to
silent and spiking output units). (c): Reconstructions of the original sources from 50
samples of neural spikes. Note that we imposed soft constraints on the variances of
firings.

196-dimensional continuous visual stimuli from 10 spiking neurons (i.e. |x| = 196
and |y| = 10). The training stimuli consisted of 30 instances of digits 1, 2, and
8 (10 of each class). The source variables were reconstructed from 50 stochas-
tic spikes at the mean of the optimal approximate decoder q(x|y). Note that
since |x| > |y|, the problem could not be efficiently addressed by optimizing the
Fisher approximation criterion (6.25). Clearly, the deterministic approaches (see
e.g. Bell and Sejnowski (1995) or Shriki et al. (2002)) are not applicable either,
since the considered channel is noisy and undercomplete. On the other hand, the
variational IM algorithm is applicable and numerically stable.

Figure 6.4 illustrates a subset of the original source signals (a), samples of the
corresponding binary responses for units (b), and reconstructions of the source
data from the population of binary spikes (c). (For Figure 6.4 (b), the x-axis
corresponds to each of the 10 units, and the y-axis corresponds to each of 30
samples from the encoding distribution). We see that while stochastic encodings
corresponding to distinct patterns are generally different, there are some visibly
distinct input stimuli characterized by very similar firing patterns (see e.g. the
rightmost patterns in the first and the second rows), and it is arguably the fre-
quency of firings of a small number of neurons which accounts for differences in
the corresponding inputs and reconstructions. For example, the firing patterns of
the rightmost stimuli in the first and the second rows are quite similar, apart from
the noisy firings of the 2nd, 9th and the 10th units. However, the resulting recon-
structions are visibly different (see the sizes of the bottom loops of the digits “8”).
The result is consistent with observations that receptive fields of post-synaptic
cells in the neocortex are influenced by distinct features of input stimuli, which
in turn determines firing frequencies of individual neurons (e.g. Markram et al.
(1998)).
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Table 6.1: Objective functions for approximate information maximization

1. Invertible channels: I(x, y) = 〈log |Jx|〉p̃(x)

2. Overcomplete deterministic channels: I(x, y) = 〈log |JT
x Jx|〉p̃(x)

3. Fisher approximation: ĨF (x, y) = 〈log |Fx|〉p̃(x)

4. Local approximation: ĨF (x, y) = 〈log exp{tr {Fx}}〉p̃(x)

5. Variational lower bound: Ĩ(x, y) = 〈log q(x|y)〉p(y|x)p̃(x)

6.6 Summary

The primary goal of this chapter was to explore applicability of the variational
information-maximizing framework in the context of learning high-dimensional
binary representations of continuous source patterns. We described an applica-
tion of the variational approach to information maximization for the case when
continuous source stimuli were represented by conditionally independent stochas-
tic binary responses. We also showed that for the considered encoding distri-
bution it was possible to derive a local iterative learning rule, which gives rise
to a form of weighted variable-rate Hebbian learning (interestingly, the receptive
fields of the post-synaptic units were influenced not only by the activations at
the pre-synaptic layers, but also (implicitly) by the activations of the neighboring
post-synaptic units). This result generalizes the work of Linsker (1997), who de-
rived a local approximation of Bell and Sejnowski’s information-maximizing rule
for deterministic invertible channels (Bell and Sejnowski (1995)).

Moreover, we have applied the numerical approximations used for deriving
the local regularizers of Szummer and Jaakkola (2002), Corduneanu and Jaakkola
(2003), and showed that the results may be used to approximate a lower bound
on I(x, y). While the resulting approximation typically has better convergence
properties than the common Fisher approximation of mutual information (see
e.g. Brunel and Nadal (1998)), our empirical results indicate that the variational
approach may be more attractive. Additionally, our results indicate that the
considered methods addressing approximate information maximization may be
viewed as approximations of our variational approach; however, generally they
do not preserve a proper bound on the mutual information, and may be less
computationally and numerically appealing.

Table 6.1 summarizes effective criteria optimized by Bell and Sejnowski (1995),
Shriki et al. (2002), Brunel and Nadal (1998), the local approximation based on
the work of Szummer and Jaakkola (2002) and Corduneanu and Jaakkola (2003),

and our generic variational approach. Here the symmetric matrix Jx = {Jij(x)}
def
=

{∂yi(x)/∂xj} ∈ R
|x|×|x| is the Jacobian of the deterministic invertible mapping

x 7→ y (with |y| = |x|), Fx ∈ R
|x|×|x| is the Fisher Information matrix (6.19), and

q(x|y) is an approximate decoder lying in a tractable family. In this chapter we
focused primarily on the discussion of the last three approaches (shown in bold),
since they are applicable for approximate maximization of mutual information in
stochastic, rather than deterministic, channels. For this reason we have ignored
the comparisons of our method with those of Bell and Sejnowski (1995) and Shriki
et al. (2002), which presume noiseless mappings from the code to the data space.
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Note that in contrast to the other techniques, the suggested variational method
optimizes a proper lower bound independently of the choice of the decoder, di-
mensionality of the input stimuli, number of post-synaptic neurons, or noise of
the stochastic firings. This extends applicability of the variational approach to
dimensionality reduction, compression, syndrome decoding, and facilitates appli-
cations of the method to undercomplete and overcomplete stochastic coding. Of
course, more biologically realistic channels and applications should potentially be
considered; our results here mainly serve to illustrate the potential advantages
of our variational information-maximizing formulation over the common (Brunel
and Nadal (1998), Kang and Sompolinsky (2001)) and less common (Szummer
and Jaakkola (2002), Corduneanu and Jaakkola (2003) and Section 6.2.1) ap-
proaches to population coding of high-dimensional input stimuli.
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Chapter 7

Auxiliary Variational Inference and

Variational Mutual Information

Maximization

In Chapter 2 we discussed a simple and general variational approach to maxi-
mizing the generic lower bound on I(x, y) for a stochastic channel. In the subse-
quent chapters we considered generalizations and applications of the variational
information-maximizing approach (see Chapter 4, Chapter 5, and Chapter 6),
and discussed the relation of the variational IM to conditional likelihood train-
ing (Chapter 3). Here we change the perspective rapidly and demonstrate that
the generic bound on the mutual information may be obtained in the context
of auxiliary variational statistical inference (Agakov and Barber (2004a)), where
we aim to lower-bound a generally intractable normalizing constant of a Markov
network1. Generally, the approach we describe here defines a completely different
family of variational bounds; however, maximization of the generic lower bound
on mutual information (2.2) may be seen as its fundamentally important subgoal.

While little work appears to have been done on developing a simple and eas-
ily generalizable variational framework for approximate information maximiza-
tion, variational methods have proved popular and effective for inference and
maximum-likelihood learning in intractable graphical models. In this context
they are often applied for bounding the likelihoods and the normalizing constants
(see e.g. Jaakkola (1997), Jaakkola and Jordan (1998), Barber and Wiegerinck
(1998), Bishop et al. (1998), Lawrence (2000), Wainwright et al. (2001), Wain-
wright et al. (2002), Beal (2003)). The majority of the standard approaches
to lower-bounding the normalizing constants are based on non-negativity of the
Kullback-Leibler divergence KL(q(x)‖p(x)) between a tractable variational dis-
tribution q(x) and the original distribution p(x) (see e.g. Jordan et al. (1998) for
a general introduction to variational inference and learning). Here we show that
by expressing the bound on the normalizing constant from the Kullback-Leibler
divergence KL(q(x, y)‖p(x, y)) in a specifically defined augmented variable space
{x, y}, we may improve the standard bounds. It turns out that the improvement

1We can use a fundamentally similar method for inference and learning in arbitrary distri-
butions, but focus on Markov networks for clarity.
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of the proposed auxiliary variational method over a convex combination of sim-
ple variational bounds is given by a specific form of the generic lower bound on
mutual information I(x, y) derived in Chapter 2 (see expression (2.2)).

In the context of approximate probabilistic inference, we may use the sug-
gested approach for improving on the lower bounds of standard factorized ap-
proximations. Indeed, we show that the method described here forms a more
powerful class of approximations than any structured mean field technique. The
existing lower bounds of the variational mixture models (Lawrence et al. (1998),
Jaakkola and Jordan (1998)) can be viewed as computationally expensive special
cases of our method. A byproduct of our work is an efficient way to calculate a
set of mixture coefficients for any set of tractable distributions, which principally
improves on the flat combination (Agakov and Barber (2004a)).

7.1 Introduction

Probabilistic graphical models provide a convenient framework for graphical rep-
resentation of joint probability distributions, and facilitate computation of many
quantities of interest required for both inference and learning. Generally, proba-
bilistic treatment of uncertainty offers a consistent and principled framework for
inference in complex domains (Chapter 1). However, many distributions used for
modeling practical domains are inherently intractable, which motivates the need
for accurate and efficient approximations. In this chapter we focus on approx-
imate inference, specifically on computation of lower bounds on normalization
constants of undirected graphical models, which can also be used to approximate
marginals of a formally intractable distribution. Fundamentally similar methods
can be applied for inference and learning in arbitrary distributions; we will focus
on inference in undirected models for clarity.

To be explicit, we will consider distributions p(x) of the (Boltzmann) form

p(x) = exp{−E(x)}/Z, Z =
∑

x

exp{−E(x)}. (7.1)

The complexity of carrying out the summation required to compute Z depends
on the graphical structure of p(x). In (poly)trees the normalisation constant
can be computed in time linear in the number of variables in the distribution.
In a general graph, the time is exponential in the size of the largest clique in
the associated junction tree (Lauritzen and Spiegelhalter (1988), Jordan (2005)).
Here we are interested in cases where exact computation by the junction tree
algorithm is infeasible.

Variational approximations have been extensively used in physics and en-
gineering and more recently applied to approximate inference and learning in
intractable graphical models (see e.g. Saul et al. (1996), Jordan et al. (1998);
Barber and Wiegerinck (1998); Wainwright et al. (2002)). In this context they
were shown to result in relatively simple representations of the induced optimiza-
tion problems; at the same time, it was shown that they often led to accurate
approximations of the generally intractable quantities of interest. Their other
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advantage for graphical models is availability of rigorous bounds on the normal-
izing constant (e.g. Jaakkola and Jordan (1996)), which contrasts with other (e.g.
Monte-Carlo) approximations (see e.g. Neal (1993)). Availability of such bounds
on the underlying intractable objectives facilitates comparisons of variational ap-
proximation techniques, where the tightness of a bound on an unknown quantity
is often used as a relative measure of performance of an approximate method.

A popular class of lower bounds on log Z is based on the non-negativity of
the Kullback-Leibler divergence

KL(q(x)‖p(x)) = 〈log q(x)〉q(x) − 〈log p(x)〉q(x) ≥ 0. (7.2)

Here 〈. . .〉q(x) denotes an average over q(x), and the bound is saturated if and only
if q(x) ≡ p(x). In the case of the Boltzmann distribution (7.1), non-negativity of
the KL divergence (7.2) yields the well-known class of lower bounds

log Z ≥ 〈− log q(x)〉q(x) − 〈E(x)〉q(x), (7.3)

where q(x) is typically restricted to a class of tractable distributions and varied
to obtain the tightest bound within the tractable class. Coupled with an upper
bound on the normalizing constant (Wainwright et al., 2002), expression (7.3)
may be used for bounding expectations in the original model. A further use for
this procedure is to provide a lower bound on the marginal likelihood in situations
of observed and unobserved variables, which is a natural derivation and extension
(Neal and Hinton, 1998) of the EM procedure (Dempster et al. (1977)).

7.1.1 Existing Variational Approximations

The computational tractability of the bound (7.3) depends on the choice of the
approximating distribution q(x). Possibly one of the simplest choices is given by
the factorized mean field model (see Figure 7.1 (a), (b)) with qMF (x) =

∏

i q(xi),
which discards all the edges from the original graph. The factorized assumption
often results in a tractably computable bound (7.3). However, the bound may
be inaccurate when the variables in the true distribution are strongly correlated.
Moreover, it can be shown that the mean field distribution is log-concave (in
the space of functional parameters), which implies a fundamental limitation of
the mean field approximation in the case when p(x) is locally multi-modal, since
significant mass contributing to the partition function may be missed.

One way to go beyond the factorized assumption for q(x) is to consider a
structured mean field approximation (Ghahramani and Jordan, 1995; Barber and
Wiegerinck, 1998) which retains some of the structure of p(x). In this case it
is often assumed that q(x) has a sparse graphical representation (e.g. it is a
(poly)tree, see Figure 7.1 (c)), which typically leads to an improvement on the
bound at a moderate increase in computational cost. However, we may note that
discarded edges in q(x) introduce conditional independencies which may not exist
in the original distribution p(x).

Other approaches (Lawrence et al., 1998; Jaakkola and Jordan, 1998) bound
the log partition function by considering mixtures of mean field type models
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Figure 7.1: Undirected models and their approximations (a schematic plot). (a)
A fully connected pairwise Markov network representing the intractable distribution
p(x); (b) a standard mean field approximation qMF (x); (c) a structured mean field
approximation qSMF (x); (d) a mixture of mean field models. (All the variables x
are coupled through the mixture label y. The dotted lines serve to indicate that the
marginal qMMF (x) expressed from qMMF (x, y) is in general fully connected). The
transparent node y shows the auxiliary variable. The shaded nodes indicate the
variables forming the space {x} of the original model p(x).

(see Figure 7.1 (d)). This formally extends the standard factorized approxima-
tions, since the resulting approximating distribution q(x) is generally multi-modal
and not factorized in x. However, in general optimization of the bound (7.3)
in this case requires minimization of the KL divergence between two fully con-
nected distributions p(x) and q(x), which requires a formally computationally
intractable evaluation of the entropy of the mixture H(x). Further approxima-
tions suggested by Lawrence et al. (1998), Jaakkola and Jordan (1998), El-Hay
and Friedman (2002) circumvent the computational intractability of variational
mixture approximations by relaxing (7.3) at the cost of introducing additional
variational relaxations. Unfortunately, unless all the mixture components q(x|y)
have the same tractable structure, optimization of the resulting bound on log Z
may become numerically unstable, which may complicate generalizations of the
existing results to variational mixtures of arbitrarily structured tractable experts.
Additionally, it is difficult to formally analyze the optimal solution induced by
the resulting optimization procedure, and the existing procedure is not easily
generalizable to richer families of variational bounds.

7.2 Auxiliary Variational Method

We will now explore the idea of using augmented variable spaces in the context
of bounding the normalizing constant, and show that the formulation gives rise
to the generic lower bound on mutual information.

Note that the computational problems of the variational mixture approxima-
tions arise from the fact that marginalization of the mixture labels y from the
joint distribution q(x, y) results in a fully connected marginal q(x) (see Figure 7.1
(d)). Informally, computation of the bound on log Z in this case requires min-
imization of the KL divergence between two fully-connected distributions (see
expression (7.2)). It is intuitive that from the computational viewpoint it would
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Figure 7.2: An auxiliary mean field approximation. The target distribution p(x, y)
is approximated by q(x, y), which is structured in the augmented space. Note that
the mapping p(y|x) was introduced in a way which does not affect the original fully
connected pairwise target distribution p(x). The transparent node y shows the aux-
iliary variable. The shaded nodes indicate the variables forming the space {x} of the
original model p(x).

be significantly more beneficial to retain the structural form of the joint distri-
bution and use q(x, y) as an approximation. The variational distribution would
in this case be defined over the augmented variable space {x, y}, while the tar-
get p(x) is defined over the space of the original variables {x}. In order for the
bound (7.3) to be well-defined, we introduce auxiliary variables y to the target
distribution. This can be readily done in such a way that the marginal p̃(x) of the
joint distribution p(x, y) has the same graphical structure as the original target
p(x) (see Figure 7.2). Then we minimize the KL divergence between q(x, y) and
p(x, y) in the joint variable spaces. Note that in contrast to standard structured
approximations, all the variables x of the marginal q(x) remain coupled, which
agrees with the graphical structure of the fully connected Markov network p(x).
However, similarly to structured mean field techniques, our auxiliary variational
method does not require a direct evaluation of the computationally intractable
entropy of the mixture Hq(x), as by minimizing the KL divergence in the aug-
mented variable space we would effectively be fitting a structured distribution.
Note that the idea of introducing “dummy” variables y is conceptually similar to
the auxiliary variational bound on the mutual information discussed in Section
2.3, though the projections and the bounds are defined differently.

Another motivation for introducing the auxiliary variables is the reported
success of auxiliary sampling techniques, such as the Swendsen-Wang (Swend-
sen and Wang, 1987), partial decoupling (Higdon, 1998) algorithms. It has been
shown that by augmenting the original variable space with auxiliary variables
and drawing samples from the joint distribution p(x, y) in the augmented space,
one can achieve a significant improvement over standard MCMC approaches.
The purpose of the auxiliary variables in this context is to capture (structural)
information about clusters of strongly correlated variables. Our hope was that
by performing approximations in the augmented space, where the auxiliary vari-
ables capture useful regularities about the data, we may improve over standard
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variational approaches.
Indeed, we demonstrate that the auxiliary variational technique forms a more

powerful class of approximations than any structured mean field approach. More-
over, the method offers an efficient way of calculating a set of mixture coefficients
for any choice of tractable approximators (for example, trees with different struc-
tures). These coefficients may be used to form a mixture which is principally
better than a single best tractable approximator or their flat combination. Fi-
nally, we show that our approach provides a computationally and conceptually
simple alternative to the existing bounds optimized by the variational mixture
methods.

7.2.1 Optimizing the Auxiliary Variational Bound

Let p(x, y) = p(x)p(y|x) define the joint distribution of the original variables x
and auxiliary variables y in the augmented {x, y} space. From the divergence
KL(q(x, y)‖p(x, y)) in the joint space it is easy to obtain an expression for the
lower bound on the log partition function of p(x) = exp{−E(x)}/Z, which is
given by

log Z ≥ −〈log q(x, y)〉q(x,y) − 〈E(x)〉q(x) + 〈log p(y|x)〉q(x,y). (7.4)

Here p(y|x)
def
= p(y|x;Ψ) is an auxiliary conditional distribution parameterized by

Ψ. (In principle, we do not need to impose parametric constraints on p(y|x); for
sparse discrete models the auxiliary conditional may be defined by the conditional
probability table). Equivalently, (7.4) may be written as

log Z ≥ −〈KL(q(x|y)‖p(x))〉q(y) + Ĩ(x, y)

=
∑

y

q(y)
[
〈−E(x) − log q(x|y)〉q(x|y)

]
+ Ĩ(x, y), (7.5)

where Ĩ(x, y) is defined as

Ĩ(x, y)
def
=

∑

x

∑

y

q(x, y) log
p(y|x)

q(y)
= 〈log p(y|x)〉q(x,y) + H(y). (7.6)

Note that up to the notational invariance, (7.6) is exactly the generic lower
bound on mutual information I(x, y) expressed for the encoder model q(x, y) =
q(y)q(x|y) (see expression (2.2)). In this context, the mapping to the auxiliary
space p(y|x) may be interpreted as the variational decoder of the IM framework.
The leftmost term in the r.h.s. of expression (7.6) defines a convex summation
of the standard lower bounds (7.3) on log Z for the set of {x}-variables, which
cannot improve on the single best bound in the set. Clearly, (7.5) may improve on
the standard bounds only if Ĩ(x, y) > 0. In the case that the auxiliary variables
y contain no information about x, i.e. p(y|x) = p(y), it is straightforward to show
that the method reproduces the standard variational bound which uses the single
best approximation q(x|y). It is intuitive that by considering less trivial auxiliary
conditional mappings we may improve on the generic lower bound Ĩ(x, y).
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If p(y|x) ≡ q(y|x) then Ĩ(x, y) defines the exact mutual information between the
original variables x and the auxiliary variables y. However, this specification leads
to computational difficulties of evaluating or bounding the intractable entropy of
the mixture H(y) (see Section 1.4). By analogy with the variational IM method,
we may constrain p(y|x) so that it lies in a tractable family (we will denote the
constrained distribution as p(y|x;Ψ), where Ψ is a set of parameters; structural
constraints may be considered similarly). Then a rigorous variational approach
to maximizing log Z would involve maximizing the bound (7.6) with respect to
the parameters (or clique potentials) of the auxiliary conditional distribution
p(y|x,Ψ) (which corresponds to the variational decoder in the IM terminology),
the marginal q(y), and the conditionals q(x|y). The general iterative optimization
algorithm in this case is given as follows:

1. Choose the auxiliary conditional p(y|x). For the remainder, we choose

p(y|x) = exp{Ψ(y; x)}/Zy|x, Zy|x =
∑

y

exp{Ψ(y; x)}, (7.7)

though more general distributions may potentially be considered.

2. Initialize q(x|y), q(y), and parameters Ψ of p(y|x).

3. For the fixed q(y, x), obtain Ψnew by solving for zeros of

∂ log Z/∂Ψ = 〈∂ log p(y|x)/∂Ψ〉q(x,y), (7.8)

or performing numerical ascent on log Z for Ψ (see the bound (7.6)). Clearly,
an unconstrained optimization would result in p(y|x) = q(y|x), as this would
maximize the generic bound Ĩ(x, y).

4. For the fixed pnew(y, x)
def
= p(x)p(y|x;Ψnew) and q(y) set

qnew(x|y) ∝ pnew(y, x) (7.9)

for all instances y.

5. For the fixed pnew(y, x) and qnew(x|y), set

qnew(y) ∝ exp

{

−
∑

x

qnew(x|y) log
qnew(x|y)

p(x)p(y|x;Ψnew)

}

. (7.10)

6. Iterate steps 3–5 until a termination criterion is met.

Note that in the case of a constrained auxiliary conditional p(y|x), step 3 is
analogous to the M-step of the generalized EM algorithm (Neal and Hinton,
1998), while steps 4 and 5 are analogous to the E-step. An update rule for
each term was obtained from (7.6) by computing the corresponding functional
derivatives while keeping other terms fixed.
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Up to this point, the results are general and applicable (at least, in theory)
for arbitrarily parameterized distributions. However, as discussed in Section 1.4,
for computational reasons it is fundamentally important to impose constraints
on the auxiliary conditional p(y|x) and the approximate joint q(x, y) (effectively,
both distributions define a set of variational parameters). If both distributions
are in a tractable family (for example, if each node yi has a small number of
x-parents), the bound (7.6) may be computed and optimized exactly (see the
discussion in Section 2.2.1). Another case leading to exact computations is when
p(y|x) ∼ N (Ψx,Σ), which would correspond to Linsker’s as-if Gaussian bound on
mutual information (see Section 2.2.2). Note that fundamentally the variational
bound on log Z is tractable only in cases when Ĩ(x, y) may be exactly computed
and optimized. Optimization of the remaining terms in the bound (7.6) should
not be problematic (at least, this is the case when the variational components
q(x|y) are structured and the underlying distribution p(x) is a pairwise Markov
network p(x) ∝ exp{−(xT Wx + xT b)} for some W ∈ R

|x|×|x|, b ∈ R
|x|).

If one wishes to have a large number of parental variables x influencing y,
further approximations may need to be employed. For the special case of dis-
tributions of the form (7.7), we can utilize the standard linear upper bound
log x ≤ mx − log m − 1. This transforms the objective (7.6) to

log Z ≥ 1+
∑

y

q(y)〈−E(x)− log q(x, y)〉q(x|y)+
〈
Ψ(y; x) + µ(x; y) − eµ(x;y)Zy|x

〉

q(x,y)

(7.11)
where eµ(x;y) is an additional variational functional of the exponential form (see
e.g. Jaakkola and Jordan (1998)). In general, optimization of the bound (7.11)
is numerically unstable and computationally expensive. However, by analogy
with the general formulation of the IM framework, we may avoid computational
difficulties of computing the bound (7.6) by constraining p(y|x,Ψ) to lie in a
tractable family. Generally, such constraints would obviate a recourse to (7.11).

7.2.2 Specific Auxiliary Representations

Effectively, the problem of choosing an appropriate (tractable yet general) map-
ping to the auxiliary space is strongly related to the problem of choosing an
appropriate variational decoder (see e.g. Sections 1.5, 2.2.1). Generally, any kind
of tractable constraints on p(y|x) may be used, such as the Gaussian or a factor-
ized approximation (see e.g. the discussion in Section 2.2.1). Additionally, we
note that by analogy with Section 2.3 we may use the auxiliary variational lower
bound on mutual information2 (2.38). Here we will briefly outline other choices
of the auxiliary conditional p(y|x), which in practice often lead to accurate ap-
proximations.

2This should not be confused with the auxiliary variational lower bound on log Z (expression
(7.5)).
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Discrete Spaces with Parametric Auxiliary Distributions

If the auxiliary space is given by a single multinomial variable y ∈ {1, . . . ,M}, a
natural choice for p(y|x) is to use a softmax type representation

p(yk|x) ∝ exp
{
f(x; u(k))

}
, U = {u(1), . . . , u(M)} ∈ R

|x|×M . (7.12)

Here f(x; U) is some differentiable function and p(yk|x) is the probability of the
auxiliary variable y being in state k = 1, . . . ,M . Although the expectation
〈log p(yk|x)〉q(x|yk) is in general intractable, we can make a use of the transformed
bound (7.11). A significantly cheaper alternative is to perform optimization of
(7.6) by approximating the term at log p(yk|〈x〉q(x|yk)), which is exact as long as
the mapping from the auxiliary to the data space is deterministic, i.e. q(x|y) ∼
δ(x − 〈x|y〉). (Note that in the IM terminology this choice of the variational
component distribution would corresponds to a noiseless encoding model, which
may greatly simplify the computations). Generally, this approximation may be
accurate as long as each component q(x|y) is sharply peaked around the mode.

Additionally, in the case when |x| is large, p(y|x) =
∏

k p(yk|x), and each factor
utilizes a simple (generalized) linear type dependency

p(yk|x) = p(yk|ak), ak
def
= fk(x

T u(k) + b(k)), (7.13)

the Gaussian field approximation (Barber and Sollich (2000)) can be employed.
From the Central Limit Theorem we can assume approximate Gaussianity of the
field ak and approximate the expectation 〈log p(yi|x

i)〉q(x|yk) by performing 1-D
Gaussian integration of the general form

∫

a
f(a)p(a), where p(a) ∼ N (µa, σ

2
a).

The means and variances of the fields are readily relatable to the first and second
order moments of q(x|yk).

In practice, such approximations do not lead to significant deviations and are
shown to be both accurate and efficient (Barber and Sollich (2000), Agakov and
Barber (2003)). Probably the greatest disadvantage of these relaxations is due to
the fact that for any realistic limit of |x| the bound will no longer be strict. One
way to address this problem is to impose additional structural constraints on the
conditionals by limiting the number of parental variables for each factor.

Discrete Spaces with Structured Auxiliary Distributions

If πx(yi) and πy(yi) correspond to x- and y-parents of the auxiliary variable yi in
the graph of p(y|x), the generic bound on the mutual information Ĩ(x, y) in the
bound (7.6) is expressed as

Ĩ(x, y) = 〈log p(y|x)〉q(x,y) + H(y)

=

|y|
∑

i=1

〈log p(yi|πx(yi),πy(yi))〉q(yi,πy(yi),πx(yi))
+ H(y). (7.14)

We can always choose a mapping to the auxiliary space in such a way that
computation of the entropic term H(y) is not problematic. Here we will focus

148



mainly on the discussion of the computational complexity of 〈log p(y|x)〉q(x,y).
Note that the representational complexity of each conditional p(yi|πx(yi),πy(yi))
is ∼ O(s|πx(yi)|+|πy(yi)|), where s is the number of states (for simplicity assumed
to be equal for all variables yi, xj). Since we are free to choose a form of the
distribution p(y|x), we can limit its parental structure, so that |πx(yi)|+|πy(yi)| is
low. For discrete variables this allows an exact representation of the conditionals.

In the special case when q(y, x) =
∏|y|

l=1 q(yl)
∏|x|

j=1 q(xj|πy(xj)) is an irregular
sparse bipartite graph (i.e. the number of y-parents πy(xj) of each variable xj is
low), and the auxiliary conditional p(y|x) is a sparse structured distribution, one
may perform the marginalization (7.14) explicitly, so that

〈log p(yi|πx(yi),πy(yi))〉q(yi,πy(yi),πx(yi))
=

∑

yi,πy(yi)

q(yi,πy(yi)) ×

∑

πx(yi)

q (πx(yi)|yi,πy(yi)) log p(yi|πx(yi),πy(yi)), (7.15)

where

q (πx(yi)|yi,πy(yi)) ≡
∑

π̃i

q(π̃i)
∏

j∈πx(yi)

q (xj|π̃i, yi,πy(yi)) (7.16)

=
∑

π̃i

q(π̃i)
∏

j∈πx(yi)

q (xj|πy(xj)) , (7.17)

and π̃i
def
= πy(πx(yi))\{πy(yi) ∪ yi}. Here we extended the definition of the y-

parents in the conditional q(x|y), so that πy(πx(yi)) defines all the y-parents (ex-
pressed from q(x|y)) of all the x-parents (expressed from p(y|x)) of the auxiliary

variable yj. The explicit marginalization (7.17) is ∼ O(s|π̃i|), and the com-
plexity of explicit computations of the bound (7.15) is ∼ O(s|πx(yi)|+|πy(πx(yi))|).
Clearly, it is acceptable as long as both p(y|x) and q(x|y) are sparse. For specific
sparse structures of the auxiliary conditional p(y|x) and the variational distri-
bution q(x, y), one may also consider evaluating the bound (7.15) by applying
algorithms of the exact inference (e.g. Jensen (1996), Jordan (2005)).

Clearly, if there are no other (e.g. parametric) constraints on the auxiliary
conditional p(yi|πx(yi),πy(yi)), optimization of the bound (7.5) for p(y|x) results
in the optimal gain

max
p(y|x)

{

Ĩ(x, y)
}

= H(y) −

|y|
∑

i=1

H(yi|πx(yi),πy(yi)), (7.18)

where H(yi|πx(yi),πy(yi)) are the structural relaxations of Hq(y|x) expressed
from the variational distribution q(x, y). Computations of each entropic term
H(yi|πy(yi),πx(yi)) are of the same order of complexity ∼ O(s|πx(yi)|+|πy(πx(yi))|),
and under the sparsity constraints may be performed exactly (see also the dis-
cussion in Section 2.2.1).
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7.3 Relation to Variational Mixture Models

In Section 7.2 we described optimization of the auxiliary variational bound on the
log partition function subject to parametric constraints on the auxiliary condi-
tional distribution. Fundamentally, it is exactly due to the choice of a constrained
conditional p(y|x) (the variational decoder in the IM formulation) that compu-
tationally efficient evaluations of the bound (7.5) were possible. The variational
mixture methods of Jaakkola and Jordan (1998), Bishop et al. (1998) may be
viewed as maximizing the same objective criterion (7.5) for the case when there
are no utilizable structural or parametric constraints on p(y|x). In this case, opti-
mization of (7.5) for large-scale models requires arguably less general relaxations
of (7.6), such as the one given by (7.11). Our argument here is that by constrain-
ing the auxiliary conditional (variational decoder) p(y|x) to lie in a tractable fam-
ily of distributions, we may avoid some of the problems of the existing variational
mixture formulations.

The existing variational mixture approaches (Jaakkola and Jordan (1998);
Bishop et al. (1998); Lawrence et al. (1998); El-Hay and Friedman (2002)) express
the mutual information term in the objective criterion (7.5) as

Ĩ(x, y) ≥

〈

log
q̃(x|y)

q(y)

〉

q(x,y)

+ 〈log λ(y)〉q(y) + 1 −
∑

y

λ(y)
∑

x

q̃(x|y)qmix(x)

def
= Í(x, y), (7.19)

which is obtained from (7.6) by applying the upper bound on the logarithmic
function

log x ≤ λx − log λ − 1 (7.20)

(see e.g. Jordan et al. (1998)). Commonly, the bound (7.19) is optimized with re-
spect to the variational functionals λ(y), “smoothing” conditionals q̃(x|y), and pa-

rameters of the mixture distribution q(y) and q(x|y), where qmix(x)
def
= 〈q(x|y)〉q(y).

In this case it is usually presumed that y ∈ {y1, . . . , y|y|} is the space of mixing
coefficients, so that the marginal qmix(x) may be computed exactly3. In order for
the computations in (7.19) to be tractable, the smoothing distributions q̃(x|y) will
need to be factorized (e.g. Jaakkola and Jordan (1998)). While theoretically one
could use (7.19) to variationally fit a mixture of trees of different structures (as
opposed to the mixture of completely factorized (Lawrence et al. (1998)) or iden-
tically structured (El-Hay and Friedman (2002)) models), it may be numerically
difficult, as optimization would involve computations of non-factorized ratios of
summations of exponentially small terms (see e.g. Bishop et al. (1998)), which fol-
lows from the need of computing the high-dimensional convolutions 〈qmix(x)〉q̃(x|y).

Moreover, it is not easy to interpret the optimal solutions of (7.19). Effectively,
by optimizing (7.19) with respect to the variational parameters λ(y), we obtain

max
λ(y)

Í(x, y) =

〈

log
q̃(x|y)q(y)

〈q̃(x|y)〉qmix(x)

〉

q(x,y)

+ H(y) ≤ I(x, y). (7.21)

3Richer representations of the y-space may potentially be considered, provided that q(x, y)
is in a tractable family, and the integrals in (7.19) may be computed exactly.
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The bound (7.21) is saturated if and only if

q̃(x|y)q(y)/〈q̃(x|y)〉qmix(x) ≡ q(y|x). (7.22)

However, for a general choice of q̃(x|y) the term in the l.h.s. of (7.22) does not
define a proper distribution in y, which complicates the analysis of effects which
relaxations of the structure of the conditional q̃(x|y) may have on the bound (cf
variational information maximization). Probably the key conceptual problems of
the existing variational mixture approaches are analytical difficulties of interpret-
ing the optimal solutions, and practical difficulties of generalizing the existing
bound (7.19) to richer, non-factorized families of the variational distributions.
Some other practical limitations include general numerical instability of the direct
computations of the average 〈qmix(x)〉q̃(x|y) in large-scale models, and the iterative
nature of optimization for individual factors q̃(xi|y) of the smoothing distribution

q̃(x|y) =
∏|x|

i=1 q̃(xi|y) (which may sometimes result in a low convergence speed).
Our method addresses the subgoal of optimizing the generic lower bound

Ĩ(x, y) by applying the variational IM. Apart from being conceptually and com-
putationally simpler than the existing variational mixture approaches (Jaakkola
and Jordan (1998); Bishop et al. (1998); Lawrence et al. (1998); El-Hay and
Friedman (2002)), our method is also arguably more general. Specifically, by
considering an unconstrained mapping to the auxiliary space and applying the
bound on the logarithm (7.20), we can use our formulation (7.5) to arrive at
(7.19), but not vice versa (also, note that (7.11) is a formal generalization of
(7.19)). Importantly, we are not confined to using the specific relaxations (7.19),
and may handle the intractability of computing I(x, y) by imposing constraints on
the auxiliary conditional p(y|x). Generally, the optimal auxiliary conditional dis-
tributions p(y|x) approximate the posteriors q(y|x) expressed from the variational
model q(y, x), which leads to a consistent improvement in the bound on I(x, y).
Also, due to the flexibility of choosing the form of the mapping to the auxiliary
space, our method suggests extensions of the variational mixture approaches to
factorial and structured auxiliary spaces. Specifically, we note that our bound on
log Z may be used in conjunction with the auxiliary variational bound on mutual
information (2.38) to improve on simple (e.g. factorized) choices of the auxiliary
conditional p(y|x); it may also be used in situations when the auxiliary space is
high-dimensional.

7.4 Demonstrations

Here we demonstrate the results comparing performance of the auxiliary vari-
ational framework with the standard factorized approaches. Also, for discrete
variable spaces we apply our method to computing reweightings of fixed approxi-
mations q(x|y) of the original model p(x), where each approximating distribution
q(x|yi), i = 1, . . . , |y| had a unique structure. We also look at the qualitative ef-
fects which the choice of the structure of the auxiliary conditional p(y|x) may have
on the theoretically achievable improvements over a mixture of simple variational
approximators.
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Figure 7.3: An auxiliary variational framework for approximate inference. (a) System-
atic changes in the mean squared error for the estimates of the second-order moments
with the growth in the number of mixture states M ; (b) Top: re-weighting coeffi-
cients for a set of fixed structured approximators (each q(x|y) is a uniquely structured
spanning tree); Bottom: the lower bounds on log Z obtained by each individual tree.
Note that greater mixing coefficients were assigned to the tree-structured distributions
which individually had resulted in higher values of lower bounds on log Z.

Inference in Discrete Markov Networks

Here we demonstrate systematic changes in the auxiliary variational estimates of
the second-order moments for discrete variable spaces. Throughout the simula-
tions, it was assumed that p(x) was a pairwise Markov network with the energy

E(x) = −(xT Wx + xT b), W ∈ R
|x|×|x|, b ∈ R

|x|, (7.23)

and x ∈ {−1, 1}|x|. In the following experiments it is assumed that y ∈ {1, . . . ,M}
is multinomial and p(y|x) has a softmax form (7.13). Initially, we did not im-
pose structural (sparsity) constraints on the auxiliary conditional distribution
p(y|x), and approximated the averages in the bound (7.5) at the means (i.e.
〈log p(y|x)〉q(x|y) ≈ log p(y|〈x〉q(x|y))). (Strictly speaking, the approximation is only
accurate in the limit of noiseless projections from the auxiliary space, and one
way to ensure its validity would be to explicitly constrain q(xi|y) ∈ {0, 1}; we did
not impose such constraints, hoping that maximization of the bound on mutual
information I(x, y) in (7.5) would tend to favor low conditional entropies H(x|y),
which would imply sharply peaked distributions). Analogous experiments were
repeated for the case of conditionally factorized factorial auxiliary state represen-
tations, i.e. p(y|x) =

∏|y|
y=1 p(yi|x), |y| ∼ O(log2 M), which led to almost identical

results.
To demonstrate the effect of the cardinality of the auxiliary space on the

marginals, we generated 100 biases b ∈ I
10 and matrices W ∈ I

10×10 of the 10-D
pairwise Markov network p(x), where I defines the uniform range [−1, 1]. Then
by analogy with Lawrence et al. (1998) we computed the squared errors ǫ(M)
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Figure 7.4: Influence of the structure of the auxiliary conditional p(y|x) and the
variational q(x|y) distributions on the theoretically achievable improvement of the
auxiliary variational lower bound on log Z over a mixture of simple bounds. The
x-axis correspond to the “flip rate” q(y). The y-axis correspond to the bound Ĩ(x, y).
The results are computed for |x| = 20, |y| = 40. The curves correspond to the exact
values of the bound Ĩ(x, y) for random structures of q(x|y) and p(y|x) which satisfy
the specified sparsity constraints (|πy(x)| = 3, |πx(y)| and |πy(y)| are shown in the
legend box). Note that a choice of a richer auxiliary conditional p(y|x) generally leads
to higher values of Ĩ(x, y).

between exact and estimated second moments 〈xixj〉, averaged for all networks
and all i 6= j. Note that for M = 1 the auxiliary variational representation (7.6)
is equivalent to the mean field model. As can be seen from Figure 7.3 (a), we
obtain a systematic improvement in the accuracy with an increase in M . The
scale of the changes in the accuracy is different from that reported by Lawrence
et al. (1998), whose mean field error ǫ(1) was approximately 0.15, though we ob-
serve qualitatively similar improvements. This discrepancy is undoubtedly due to
details of the optimization approaches, and does not detract from our conclusion
that the auxiliary method conveys a systematic improvement.

Reweighting Structured Approximators

Here we demonstrate how we can easily apply a simple reformulation of our
method for computing reweightings of fixed structured approximations q(x|y).
For the weights W ∈ I

10×10 chosen at uniform random, we generated K = 10
random spanning trees with the weights W(m) such that W

(m)
ij = Wij for all i, j

and m = 1, . . . , K. Then we re-weighted the trees by recomputing q(y) according
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to

q(yk) ∝ exp
{
〈−E(x) − log q(x|yk) + log p(yk|x)〉q(x|yk)

}
, (7.24)

= p(yk) exp {−KL(q(x|yk)‖p(x|yk))} (7.25)

which follows directly from (7.10). Note that the mixing coefficient q(yk) of each
component q(x|yk) in the variational distribution is proportional to the surrogate
marginal in the auxiliary space p(yk), and the discrepancy between the mixture
component q(x|yk) and the model p(x|yk) for a fixed setting of the component’s
label yk.

Figure 7.3 (b) illustrates typical re-weightings of fixed structured approxima-
tors q(x|y) and the induced lower bounds on log Z for the case of the softmax
parameterization of p(y|x) and for fixed parameters of the auxiliary conditional
(selected at uniform random on I). The corresponding bounds in this case were
Lr ≈ 8.38, Lu ≈ 8.87, Lb ≈ 8.33, and Lav ≈ 9.52 for the random, uniform, best
single, and auxiliary variational weightings respectively. Note that the single-
step computation of (7.24) has an acceptable order of computational complexity
(∼ O(|x|2) if we consider the approximation log p(y|〈x〉q(x|y)) and a Markov net-
work (7.23)), and can be easily extended to the case of higher dimensional models.

The results are straight-forward but potentially interesting, as they suggest a
quick and simple way to compute mixing coefficient for a set of trained structured
approximations q(x|y). So instead of maximizing the bound for K standard in-
trinsically tractable approximators, choosing a single best one which leads to the
tightest lower bound on log Z, and discarding the remaining K − 1 variational
distributions, we can use all of the approximations to obtain a tighter lower
bound on the normalizing constant. Interestingly, we can obtain these results
even without learning the optimal mapping p(y|x) to the auxiliary space, and
by performing generally suboptimal approximations of the conditional entropies
in Ĩ(x, y) at the mean of q(x|y). An arguably more principled approach to the
problem of re-weighting the variational distributions would involve optimization
of the auxiliary variational lower bound on log Z with respect to q(y) and p(y|x)
for a set of given structured components q(x|y). Formally, a more careful choice of
constraints on p(y|x) may need to be considered in order to ensure tractability of
computing Ĩ(x, y). Generally, however, it may be practically attractive to apply a
simple one-step procedure to produce a tighter bound on log Z for a given choice
of standard variational distributions.

Structured Auxiliary Mappings

It is interesting to see how the choice of structured constraints on both the aux-
iliary mapping p(y|x) and the variational conditional q(x|y) could affect the the-
oretically optimal improvement over a convex combination of approximations.
In order to check this, we assumed that the auxiliary space was binary and
high-dimensional, so that y ∈ {0, 1}|y| (cf the variational mixture methods of
Jaakkola and Jordan (1998), Bishop et al. (1998)). We also assumed that dif-
ferent dimensions of the auxiliary vector were identically distributed, so that

q(x, y) = q(x|y)
∏|y|

i=1 qi(yi) and qi(yi = a) ≡ qj(yj = a)
def
= q(y = a) for all
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i, j ∈ {1, . . . , |y|}. The variational conditional q(x|y) was constrained as

q(x|y) =

|x|
∏

i=1

q(xi|πy(xi)) =

|x|
∏

i=1

δ



xi −
⊕∑

yj∈πy(xi)

yj



 , (7.26)

where πy(xi) are the y- parents of variable xi in the graph for q(x|y), and
∑⊕

defines the modulo 2 summation. Equivalently, we can define q(x|y) ∼ δ(x−Gy),
where G ∈ {0, 1}|x|×|y| is a binary matrix such that Gij = 1 if and only if yj is a
parent of xi in the graph4 for the variational conditional q(x|y).

To ensure tractability of the computations, we also imposed structural con-
straints on the stochastic mapping to the auxiliary space, so that the auxiliary
conditional was defined as p(y|x) =

∏|y|
i=1 p(yi|πx(yi),πy(yi)), where πx(yi) and

πy(yi) are the x- and y-parents of unit yi under the model p(y|x), and |πx(yi)| ≪ |y|
(additional care had been taken to ensure that p(y|x) defined a proper distribu-
tion, i.e. its graph was directed acyclic). The variables were defined over discrete
high-dimensional domains, so that x ∈ {0, 1}|x| and y ∈ {0, 1}|y|, and under the
imposed sparsity constraints the conditional p(yi|πx(yi),πy(yi)) could be imme-
diately obtained by maximizing the exact value of the bound (7.6).

Figure 7.4 shows the improvement Ĩ(x, y) over the convex combination in (7.5)
as a function of the flip rate q(y) ∈ [0, 0.1] for |x| = 20 and |y| = 40. The results
are shown for the optimal settings of the auxiliary conditional p(y|x), obtained
by maximizing the bound on log Z (which immediately leads to the constrained
approximations of q(x|y)). Throughout the experiments, it was assumed that
|πy(xi)| = 3, and the structure of p(y|x) varied as shown on Figure 7.4. For
each choice of the structural constraints, the results were averaged over 20 runs
with random choices of q(x|y). We see that models with richer structures of
the auxiliary conditional typically lead to greater bounds. Note that for the
trivial independent setting p(y|x) = p(y) (i.e. |πx(yi)| = 0), there would be no
theoretical improvements over a standard approximation, so that Ĩ(x, y) = 0.
However, the considered choices do lead to consistent improvements in (7.6) with
an increase in the complexity of the auxiliary mappings. This also empirically
confirms the analytical results of Section 2.2.1, and agrees with the intuition that
richer structures of variational distributions tend lead to consistent improvements
over simpler approximations.

We have repeated similar experiments for different sizes of the auxiliary space
|y| (assuming that |x| was fixed). Our initial hope was that by considering
high-dimensional factorial representations in the auxiliary space, we could poten-
tially increase the theoretically achievable improvements over mixtures of simple
bounds. It is easy to see that if M is the effective number of mixture states then
Ĩ(x, y) ≤ I(x, y) ≤ log M , with the maximum achieved for flat q(y) and deter-
ministic posteriors q(y|x) (see expression (7.5) and a discussion in Bishop et al.

4This formulation is particularly interesting, as it could be shown to be relatable to the
settings of a syndrome decoding problem (see e.g. McEliece (1977)), where the marginal q(y)
defines the bit error probability (flip rate) of a binary symmetric channel, x ∈ {0, 1}|x| is the
syndrome vector, and y ∈ {0, 1}|y| is the (unknown) noise vector. The goal of decoding in this
context would be to perfectly determine the unknown noise y from the syndrome vector x, which
for the half-rate codes (|y| = 2|x|) could theoretically be done for q(y) / 0.11.
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(1998)). By considering the factorial auxiliary state representations, we hoped to
massively increase the effective number of mixture states (so that M ∼ O(s|y|))
and achieve nearly linear improvement in the bound (7.5) with |y|. Unfortu-
nately, our initial intuition has not yet received strong empirical confirmations.
While choosing richer structures of the auxiliary conditionals p(y|x) could indeed
be helpful for obtaining consistent improvements in Ĩ(x, y), choices of higher-
dimensional auxiliary spaces did not always lead to systematic improvements in
the bounds, especially for higher flip rates q(y) and random irregular structures
of p(y|x) and q(x|y).

This effect may be explained by the sparsity constraints which we needed to
impose on the auxiliary conditional. Let us presume that the auxiliary conditional
is given by p(y|x) =

∏|y|
i=1 p(yi|πx(yi),πy(yi)), where each factor p(yi|πx(yi),πy(yi)).

Without loss of generality we may define the exact posterior expressed from the
variational model q(y, x) as q(y|x) =

∏|y|
i=1 q(yi|π̃x(yi), π̃y(yi)), where π̃x(yi) ⊇

πx(yi) and π̃y(yi) ⊇ πy(yi). Then the difference between the exact mutual infor-
mation I(x, y) and the tightest lower bound (7.6) obtained at the optimal settings
of p(y|x) is given by

|y|
∑

i=1

I(yi, {π̃x(yi), π̃y(yi)}\{πx(yi),πy(yi)}|{πx(yi),πy(yi)}),

which quantifies the overcounting effects which occur when we bound the condi-
tional entropy H(y|x) by a summation of the marginals. (For example, if both the
variational distribution q(x, y) and the auxiliary conditional p(y|x) are chains, this
difference would be negligible only in situations when q(yi|yi−1, xi) ≈ q(yi|yi−1, x),
leading to I(yi, x\xi|yi−1, xi) ≈ 0. This is effectively analogous to the cases when
we may ignore future observations during the inference in state-space models,
which clearly imposes significant limitations). One may expect that for general
distributions q(x, y), the growth in |y| and |x| leads to increasing overcounting
effects, resulting in a greater volume loss. These effects are not accounted for in
the current formulation of our method, and will need to be addressed in further
extensions of this work. E.g. the overcounting problem may be addressed by clus-
ter variation methods (see e.g. Kikuchi (1951), Yedidia et al. (2000a), Yedidia
et al. (2004)), which approximate entropy over a region as a weighted summation
of entropies over smaller regions. Generally, however, our motivation here was
to retain a rigorous bound on the intractable entropy (leading to a proper lower
bound of log Z), and improving our current method in a rigorous and general way
is a challenging problem for future research.

7.5 Summary

Here we described an approach which generalizes the standard Kullback-Leibler
variational procedures for evaluating the variational lower bounds on the gener-
ally intractable normalizing constants of undirected graphical models. Our work
here was partially motivated by the success of auxiliary sampling techniques (e.g.
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Swendsen and Wang (1987), Higdon (1998), Neal (1993)), which introduce aux-
iliary variables and draw samples from a specific joint distribution defined in the
augmented variable space. The role of the auxiliary variables in this context is
to capture (structural) information about clusters of correlated variables, which
proves to be effective for decreasing the time gap between subsequent independent
samples.

In this chapter we considered an auxiliary variable extension of common vari-
ational methods for bounding the log partition function, which could be useful in
the context of approximate probabilistic inference. We showed that it is possible
to define a tractable variational framework which leads to systematic improve-
ments over the standard theory for any structured approximation. While the
method described here is of a potential interest as a general approach for approx-
imate inference, it demonstrates a curious link to our variational information-
maximizing framework discussed in Chapter 2. Specifically, it turns out that the
improvement of the proposed bound on log Z over a convex combination of stan-
dard bounds is given by a specific form of the generic lower bound on mutual
information (see expression (2.2)).

Our auxiliary variational method for inference is related to the family of vari-
ational mixture models (see Jaakkola and Jordan (1998), Lawrence et al. (1998)),
which can be seen as special and more computationally expensive cases of our
approach. Specifically, we can obtain the existing bounds by considering an un-
constrained mapping to the auxiliary space and applying a standard relaxation
of the logarithmic function (7.20) (but we cannot generally derive our frame-
work from the existing variational mixture approximations). Importantly, we
may avoid computational, numerical, and practical problems of applying the ex-
isting variational mixture methods by considering tractable constraints on the
mappings from the data space {x} to the auxiliary space {y}. In this formu-
lation, we may view our variational information-maximizing framework as an
integral subgoal of auxiliary variational inference. The method is attractive both
computationally and analytically, as the flexibility of the choice of the auxiliary
conditional distribution (the variational decoder in the IM terminology) suggests
simple generalizations of the generic approach to reacher families of variational
decoders (such as chains, polytrees, and mixtures-of-experts, see e.g. Section
2.2.1 and Section 2.3). Additionally, the variational IM algorithm is easy to un-
derstand analytically (which becomes particularly attractive when compared with
the analysis of the existing variational mixture models, where interpretation of
the optimal smoothing factors and their effects on the induced bounds on I(x, y)
at this stage remain, to us, largely unclear). Indeed, the optimization surface of
our method is concave in the auxiliary conditional p(y|x), which for sparse models
makes it possible to find the optimal projections analytically (see Section 2.2 and
Section 7.2.2).

In the context of probabilistic variational inference, we may use the suggested
approach for improving on the lower bounds on log Z produced by the standard
approximations. Indeed, we showed that the method described here forms a
more powerful class of approximations than any structured mean field technique.
We also showed that a richer choice of structures of the auxiliary conditional
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distribution may indeed lead to tighter lower bounds on the log partition func-
tion compared with simpler approximations. While these results are potentially
interesting (especially when compared with standard variational approaches),
the theoretically achievable gains over mixtures of standard approximations are
bounded to be logarithmic in the size of the auxiliary space. Our initial hope
was that by considering factorial representations of the auxiliary space, we could
increase the effective number of the states, which could potentially lead to super-
logarithmic improvements. Unfortunately, our current experience suggests that
by naively increasing dimensionality of the auxiliary space (and imposing spar-
sity constraints on p(x|y)), we do not always get significant improvements over the
lower-dimensional formulations. This may potentially be explained by the fact
that the simple formulation of the method leads to the bounds which ignore the
overcounting problem in bounding the conditional entropy Hq(y|x). Addressing
this matter in a systematic way can make the method potentially more attractive
for variational inference.

A practical byproduct of our work is an efficient way to calculate a set of mix-
ture coefficients for any set of tractable distributions, which principally improves
on the flat combination (Agakov and Barber (2004a)). An extension of this
work would be an application to a real-world problem (possibly in a structured
context, e.g. by extending and re-formulating the results of Ghahramani and
Hinton (1998), Ghahramani and Hinton (2000)).
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Chapter 8

Discussion

Finding regularities in observations of the external world is an important task han-
dled by many biological organisms. It is believed that learning about such regular-
ities involves adapting structural and physiological properties of brain synapses,
resulting in internal encodings of the external stimuli. Intuitively, meaningful
internal representations should in some sense be informative about the environ-
ment, in which case biological learning may be viewed as a process of finding
informative representations of the observations. Of course, in biology such inter-
nal representations would be intrinsically constrained by the neurophysiological
properties of biological networks.

Many applications of machine learning are aiming to address a fundamentally
similar task, where the key goal is to automatically find meaningful represen-
tations of the observations. For example, a system of automated medical diag-
nostics may be applied for determining hidden diseases which could have given
rise to the observed symptoms; images of human faces taken by a robot’s camera
may be used by a robot to recognize human emotions, etc. The process of finding
unknown informative descriptions (such as diseases and emotions) of the observa-
tions (such as symptoms and photographs) is generally referred to as the process
of inference, which is one of the fundamental tasks of machine learning. Another
fundamental task is learning, which may be viewed as an automated procedure
for finding mathematical formalisms which would result in meaningful inferences.
In practice learning often corresponds to finding an optimal model which provides
a description of how the data relates to its representations. Both learning and
inference may in principle be very computationally demanding. In this work we
aimed to target computational intractability of a class of learning approaches.

Generative vs encoder models

Generally, one may distinguish two different approaches to unsupervised learn-
ing. The first class of methods aims to learn a constrained statistical model of the
observations. The key idea there is to find a model of a probability distribution
which would be likely to generate the data. Constraints on the distributions are
introduced by utilizing the prior knowledge about the modeled domain, for ex-
ample by choosing a specific parameterization and structure for a class of models.
In these methods learning typically corresponds to fitting a constrained model to
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the observations. Informally, this may be viewed as minimizing a measure of dis-
crepancy between the empirical distribution and the marginal distribution of the
observed variables expressed from the model. Inference, i.e. the process of find-
ing unknown informative representations of the observations, can be addressed by
applying fundamental probability rules. An example of such class of methods in-
cludes maximization of marginal likelihoods in generative latent variable models,
where for a fixed set of parameters the model specifies how to generate the ob-
servations. Usefulness of the extracted hidden variable representations expressed
from the model would in this case be quantified by how well the model fits to
the set of observations. A different class of methods aims to extract informative
representations directly from the set of observations. Rather than learning the
density model of the observations, the methods aim to find a mapping (gener-
ally, stochastic) from the observations to the latent variable representations by
optimizing other measures of informativeness. A popular class of such methods is
based on the idea of maximizing the mutual information between the observations
and the unknown representations in the encoder, or recognition models.

There are fundamental differences in how we parameterize and train genera-
tive and recognition models. Specifically, while parameterization of a generative
model imposes explicit constraints on the distribution of the observations given
latent variable representations (which may require knowledge about the process
which generates the data), parameterization of an encoder model imposes explicit
constraints on the encoding distribution. This may be particularly important in
situations when constraints on the encoding distribution are partially known from
the physical properties of the channels (which may be the case in engineering or
neurobiological domains), or when explicit constraints on the encoding distribu-
tion form a part of a specific problem formulation (for example, in problems of
constrained subspace selection). In some applications it may be easier to param-
eterize an encoder, rather than a generative model (one example is clustering
with a defined family of similarity measures); in other cases, the situation may
be completely opposite (for instance, when the family of distributions generating
a specific dataset is known).

Generally, a choice of a model (generative vs encoder) may be strongly de-
pendent on a specific task. To illustrate this, consider a problem of constructing
a system for automated medical diagnostics, where patients’ symptoms are as-
sociated with diseases. Many medical experts may arguably find it easier to
parameterize a stochastic mapping D → S from the diseases (D) to the symp-
toms (S) (which requires encyclopedic knowledge), rather than S → D (which
requires medical heuristics). Once the model is specified and trained, it may be
applied for inferring combinations of hidden diseases from a combination of the
observed symptoms. We see that the former specification of the system defines a
standard generative model; the latter parameterization corresponds to an encoder
model. If we have a good idea about symptoms which could be “generated” by
a given disease, the generative model is more easily parameterizable.

Now let us re-formulate the problem slightly. Assume that we are interested
in finding clusters of symptoms which could form a new (and unknown) family
of diseases, which we may be aiming to name. By specifying a similarity metric
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in {S} (i.e. defining what it means for the symptoms to be similar), we may
find it easier to describe a mapping from a symptom to a disease family, even
though we may not necessarily know much about disease families. This would
be an example of an encoder model, where the unknown cluster labels (disease
families) carry useful information about the observations (symptoms). Effectively,
this formulation (S → D) defines a discriminative unspervised framework, where
the model is parameterized similarly to a conditionally trained classifier (like in
the supervised learning formulation), but the representations D are unknown.
Such parameterizations may be particularly useful in situations when little is
known about the process which generates the data.

Unfortunately, for both generative and encoder models the problem of find-
ing informative latent variable representations {y} of the observations {x} may
become very difficult in the presence of noise, which motivates a need of ap-
proximations. In this thesis we considered a class of machine learning methods
maximizing the mutual information I(x, y) in encoder models, and addressed
the fundamental computational problems of the exact formulation by applying
variational approximations. Our focus on the discussion of variational methods
for information maximization was partially motivated by their popularity and
effectiveness for inference and likelihood training in graphical models, and the
apparent lack of understanding of how the methods could in general be applied
in the information-maximizing context (indeed, many of the currently existing
approximations of mutual information are either heuristic or too specific). The
fundamental advantage of the variational methods over other approximations is
availability of rigorous bounds on the intractable quantities, which facilitates
comparisons of different variational approximation techniques, and in some cases
makes them particularly attractive for learning. For this reason, one of our tech-
nical subgoals here was to try to retain rigorous bounds on I(x, y), whenever
possible.

General results

In this thesis we described a family of variational lower bounds on mutual infor-
mation I(x, y), which gave rise to a formal and theoretically justified approach to
information maximization in noisy channels. While the formulation of the generic
bound on the objective criterion is straight-forward, it appears to have attracted
little previous attention as a practical tool for approximate maximization of in-
formation content. The fundamental idea of the approach is to introduce a varia-
tional decoder q(x|y) which is constrained to lie in a tractable family. Effectively,
an iterative information-maximizing (IM) algorithm optimizing the generic lower
bound Ĩ(x, y) extends the family of the generally intractable Blahut-Arimoto type
algorithms (Arimoto (1972), Blahut (1972)), and reduces to them in the special
case when the variational decoder is unconstrained. Qualitatively, this is similar
to the variational EM algorithm for likelihood maximization (Neal and Hinton
(1998)), which reduces to the standard EM (Dempster et al. (1977)) for uncon-
strained variational posteriors. The generality of the approach allows a flexibility
in the choice of variational decoders or specific optimization procedures, which
suggests that the method may naturally generalize other techniques for approx-
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imate maximization of mutual information. Indeed, in addition to generalizing
the conventional Blahut-Arimoto formulation, the IM generalizes the existing
as-if Gaussian criterion (Linsker (1992)), which may be seen as a specific way of
optimizing the variational lower bound on mutual information for a specific choice
of linear Gaussian variational decoders. Additionally, factorial relaxations of the
generally intractable conditional entropy H(x|y), which are sometimes used in
approximations of I(x, y), may be seen as special cases of the generic lower bound
on I(x, y) with structural constraints on the parental structure of the variational
decoder distribution.

In our work we also explored general relations of the variational IM algorithm
to maximum likelihood learning in generative models and conditional likelihood
learning in noiseless and stochastic autoencoders (where by a noiseless autoen-
coder we mean a self-supervised network with a deterministic encoding distribu-
tion p(y|x) ∼ δ). In contrast to much of the previous work which related the
likelihood and the mutual information approaches for relatively simple special
cases (e.g. Pearlmutter and Parra (1996), Cardoso (1997), MacKay (1999b)), we
aimed at relating the methods for the general variational settings independently
of the specific model parameterizations. To make the comparisons possible, we
assumed that both the encoder and the generative model led to identical infer-
ences of the latent representations y for all the source patterns x. For this case,
we showed that the likelihood of a generative model y → x could be viewed as
a relaxation of a specific generic bound on I(x, y), defined for the corresponding
model x → y of a noisy channel. Interestingly, while generally it is not easy to
relate learning by maximizing the exact likelihood and the exact mutual infor-
mation for generative and encoder models, we may find specific cases when the
fixed points of the generic lower bound on I(x, y) are identical to those of the
standard variational Jensen’s bound on the likelihood (with identical constraints
on the encoding mapping of the encoder model and the variational posterior of
the generative model). For example, this happens for noiseless channels indepen-
dently of invertibility of the mappings x 7→ y (provided that the generative model
is characterized by flat priors on latent variables y). This result shows interesting
intersections of the variational IM and EM approaches, though in general the
methods are quite different.

Another curious result of our study is a link of the simple form of the IM al-
gorithm to conditional likelihood training in stochastic autoencoders. While the
relation of the probability of correct deterministic reconstructions to the mutual
information in the corresponding stochastic channels is well-known (Fano (1961)),
its stochastic generalizations appear to have attracted little attention within the
machine learning community. (This was probably the reason for a large number
of heuristic or very specific approximations of the generally intractable mutual
information I(x, y), which to the best of our knowledge are rarely (if at all) com-
pared with the conditional training in stochastic autoencoders). A simple way to
maximize the information content which the codes y contain about the sources
x would be to maximize the conditional likelihood p(x̃|x) in a stochastic autoen-
coder model x → y → x̃ for some choice of the decoding distribution. It is easy to
see that in stochastic models the conditional likelihood is generally intractable,
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and it is necessary to consider its approximations. As a result of our study we
showed that the standard variational Jensen’s bounds on the conditional likeli-
hood have the same fixed points as the generic lower bound on I(x, y). This result
is rather disappointing, as it shows that by considering a simple stochastic model
performing self-supervised training we could effectively arrive at the fixed points
identical to the ones produced by the simplest formulation of the IM approach.
However, our method is easier than standard variational approaches of maximiz-
ing the conditional likelihood in stochastic autoencoders, which would effectively
correspond to a more expensive way of optimizing the simple generic bound on
the mutual information. Generally, this results in the computational and repre-
sentational efficiency and desirable convergence properties of the IM approaches,
which optimize the bound for a significantly lower number of variational param-
eters (lower by the order of magnitude compared with a naive application of the
variational Jensen’s bound on p(x̃|x)).

Another result of the suggested work is the definition of a richer family of
tractable auxiliary variational lower bounds on I(x, y), which formally generalizes
on the generic lower bounds on I(x, y). By analogy with the auxiliary sampling
techniques (see e.g. Swendsen and Wang (1987), Higdon (1998)), the key idea
was to introduce additional variables, which could be used for capturing useful
regularities of the source patters and for introducing global dependencies to the
decodings. Importantly, projections to the auxiliary space were defined in a way
which did not alter properties of the original channel. We demonstrated that the
auxiliary variational bounds may indeed be significantly tighter than the simple
generic criteria. This result is potentially interesting from the communication-
theoretic perspective, as it demonstrates a simple and computationally efficient
way to produce tighter bounds on the capacity of a communication channel with-
out assuming that more data is being transmitted across the channel. Generally,
this family of variational methods may be used as a simple and tractable approach
for improving on simple bounds on mutual information.

Interestingly, the variational formulation of the information maximizing pro-
cedure suggests a relation between maximizing the generic lower bound on I(x, y)
and computing an optimal estimate of an intractable posterior p(x|y) in a genera-
tive model, where the codes y are visible and the sources x are hidden. One of the
goals of variational inference in graphical models is to approximate moments of
the generally intractable posterior p(x|y) by the moments of a simpler distribution

q(x|y). Standard mean field approaches assume that q(x|y) ∝
∏|x|

i=1 q(xi|y), which
usually leads to q(xi|y) approximating any one of a large number of local modes
of the model-specific posterior p(xi|y) (where q(x|y) is assumed to be factorized
in x). On the other hand, by imposing parametric constraints on the variational

decoder, so that q(x|y,Θ) =
∏|x|

i=1 q(xi|y,Θi), and optimizing our bound on I(x, y)
for parameters of the decoder, we obtain posterior mean estimates which are good
on average.

This outlines a fundamental problem of using the variational decoders q(x|y,Θ)
of the IM formulation for approximate inference, even compared with standard
mean field methods. For example, this is the case for the problem of syndrome
decoding in binary symmetric channels. Specifically, if the exact posterior p(x|y)
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is sharply peaked (which is the case for specific choices of the encoder distribution
p(y|x), see e.g. Luby et al. (2001)), a mean field theory may indeed provide an
accurate approximation of p(x|y) for each setting of y. (Generally, however, such
accurate approximations may not always be easily found, due to a large num-
ber of local modes). In contrast, by learning a factorized variational distribution
which is only optimal on average, variational estimates of the exact marginal for
each specific codeword y may in general be very poor. One could hope to obtain
improvements by considering significantly richer families of variational decoders
(e.g. by having no parametric constraints on each factor q(xi|y)). Unfortunately,
unless the parental structure of each q(xi|y) is very sparse, the computational
and representational complexity of using such approximations will generally be
prohibitively high, while a choice of sparse structures will still lead to the aver-
aging effects. While it may potentially be possible to modify the IM framework
to obtain better estimates of the exact posterior means 〈xi〉p(xi|y), we do not ad-
vocate using simple constrained variational decoders obtained by our method as
a competitive technique for error correction in binary symmetric channels.

Generally, we stress that a correct way of viewing our variational approach
would be to interpret it as a general framework for learning an optimal encoding
distribution by maximizing a proper bound on I(x, y). Once the optimal encoder
is learned, one may choose any of a number of approximate inference techniques
to perform the reconstructions. Using the variational decoder q(x|y) for inference
is only one of such choices (which may be good or poor, depending on the specific
application).

Case studies

As a part of our exploration of the information maximizing framework, we con-
sidered applications to constrained dimensionality reduction. Specifically, we dis-
cussed several ways of applying the framework to information-theoretic clustering,
where the encoding distribution was defined either by the exact posterior of the
corresponding latent variable model, or by explicitly choosing a specific nonlinear
projection into the code space. The former approach could also be used for train-
ing generative models, which typically resulted in a more uniform coverage of the
data space compared with the conventional training by maximizing the likelihood
in mixture models. The latter approach to information-theoretic clustering could
be applied to learning parameters of kernel functions (within a specific family),
which was beneficial for visualizing the underlying structure of the data. Empir-
ically, the method favorably compared with the Gaussian mixture, feature-space
k-means, and non-kernelized information-theoretic clustering.

We also outlined analytical properties of the optimal IM solutions for the case
of real-valued encoded representations y. Specifically, we extended the work of
Bourlard and Kamp (1988) and Bourlard (2000) to arbitrary kernelizable feature
mappings in the stochastic information-theoretic context, and showed the noth-
ing could be gained by using nonlinear encoders and linear variational decoders
in the context of variational information maximization in noisy Gaussian chan-
nels. To handle the intrinsic constraints of linear Gaussian variational decoders
applied in the context of nonlinear encodings, we suggested a proper variational
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relaxation of the bound on I(x, y). For nonlinear Gaussian encoding distribu-
tions, this led to kernel PCA (Schoelkopf et al. (1998)) as the optimal solution
for encoder’s weights. Additionally, in the deterministic limit of non-parametric
encoding mappings, our framework led to the Gaussian Process Latent Variable
Models (Lawrence (2003)) for a specific choice of the variational decoder.

As an immediate extension of our work, we note that a further study of the
bound on I(x, y) for nonlinear Gaussian channels may need to be considered.
Our current study indicates that the IM framework may be used to learn non-
degenerate kernel parameters, but the obtained visualization and reconstruction
results are strongly influenced by the choice of the kernel and the constraints
on the feature-to-data decoding mappings. Importantly, we note that if the
encoding noise may in principle be reduced to zero, one may consider optimizing
simpler objective functions, such as those of Gaussian Process Latent Variable
Models (Lawrence (2003)). These models also appear to lead to better visualiza-
tion results, as they consider noiseless non-parametric encoders and rich families
of variational decoders (given in these models by products of Gaussian processes).
It is therefore believed that a further study of variational IM in nonlinear Gaus-
sian channels for visualization or dimensionality reduction may be of a practical
interest mainly in situations when the noise of the encoding distribution is un-
avoidable.

An arguably more promising application field to explore would be communi-
cation of discrete-valued data over channels with Gaussian noise, where a specific
practical application may include code division multiple access in cellular tele-
phony (see e.g. Viterbi (1995)). Additionally, it is interesting to explore the
relation of our kernelized information-theoretic clustering approach (Agakov and
Barber (2005b), Agakov and Barber (2005c)) to some of the common spectral
clustering methods (e.g. Shi and Malik (2000), Yu and Shi (2003)), which were
shown to be related to the weighted feature-space k-means (Dhillon et al. (2004)).
Some of our preliminary results extending the work of Chapter 5 suggest that by
constraining the feature-space coefficients, it may potentially be possible to relate
the mentioned spectral clustering methods to a form of the constrained variational
information-maximizing procedure (though a direct relation between the methods
is not entirely clear at this stage).

As another application of the variational IM approach, we explored applicabil-
ity of the variational IM framework in the context of learning high-dimensional
binary representations of continuous source patterns for a specific biologically
inspired parameterization of the encoding distribution (defining a population of
point-neuron models). We believe that the application area where the results
may be found to be particularly useful is stochastic neural coding (as neurophysi-
ological properties of biological networks suggest a need of explicit constraints on
the encoding distribution). For this case, we compared our variational approach
with Brunel and Nadal’s Fisher approximation of mutual information (Brunel
and Nadal (1998)). Moreover, we compared our approach with the recent re-
sults of Szummer and Jaakkola (2002) and Corduneanu and Jaakkola (2003),
which may be seen as another approximation of a lower bound on I(x, y) for-
mally generalizing on the criteria optimized by a variety of common popula-
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tion coding methods (Pouget et al. (1998), Zhang and Sejnowski (1999), Bethge
et al. (2002)). Our empirical results indicated that for the considered cases,
our variational approach was most preferable (though the results here are rather
preliminary, since in order to provide a sensible comparison of our bound with
the existing non-bounding approximations, we have constrained our models to
be low-dimensional). Additionally, we demonstrated that for the considered en-
coding distribution it was possible to derive a local learning rule, which may
potentially be attractive from neuro-biological and computational perspectives
(this also generalizes work of Linsker (1997), who had derived local approxima-
tions of infomax learning for invertible channels). In the future, more biologically
realistic channels and applications should be considered. Additionally, for the
specific biologically interesting channels, we are planning to conduct a tractabil-
ity study of other lower bounds on mutual information known from statistical
mechanics of supervised learning (Opper and Haussler (1995), Haussler and Op-
per (1997)) and compare them with our variational approach. Nevertheless, we
can say that at this stage our current results illustrate potential advantages of
the variational information-maximizing framework over the common (Brunel and
Nadal (1998), Kang and Sompolinsky (2001)) and less common (Szummer and
Jaakkola (2002), Corduneanu and Jaakkola (2003) and Section 6.2.1) approaches
to population coding of high-dimensional input stimuli.

Finally, we considered a seemingly unrelated problem of lower bounding the
normalizing constant (partition function) Z of an undirected graphical model
(similar methods may be used to bound the likelihood of any probability distribu-
tion). Specifically, we introduced an auxiliary variable extension of any structured
mean field theory, which could be useful in the context of approximate probabilis-
tic inference. We showed that by considering a projection to the auxiliary variable
space, and expressing the Kullback-Leibler divergence between the distributions
defined over the augmented variable spaces, it was possible to define a tractable
variational framework which leads to systematic improvements over the standard
theories. While the auxiliary variational extension of standard approximation
theories is of a potential interest as a general approach to approximate inference,
it demonstrates a curious link to our variational information-maximizing frame-
work. In particular, it turns out that the improvement of the proposed bound on
log Z over a convex combination of standard bounds is given by a specific form of
the generic lower bound on mutual information. The variational IM framework
may therefore be seen as addressing an integral subgoal of auxiliary variational
inference.

This part of our study suggests interesting directions for further research, in-
cluding exploration of the effects which a choice of the mapping to the auxiliary
space may have on the bounds for high-dimensional auxiliary spaces. Unfortu-
nately, our current results suggest that the sparsity constraints on the structures
of auxiliary conditional (variational decoder) distributions may be too restric-
tive. (For example, in the case when both the variational distribution q(x, y) and
the auxiliary conditional p(y|x) have chain structures, the theoretically achiev-
able gain produced by our approximation (over a simple theory) would only be
high (∼ O(|y|)) in situations when q(yi|yi−1, xi) ≈ q(yi|yi−1, x), where y and x
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are the auxiliary and latent variables respectively. This is effectively analogous
to the cases when we may ignore future observations during inference in state-
space models, which may be the case only for a limited number of applications).
Nevertheless, we can formally show that by considering richer structures of the
auxiliary conditional distributions we formally improve on simple approximations,
modeling them as generally suboptimal special cases. Generally, modifying our
framework for obtaining even better improvements would be an interesting and
challenging direction for future research. We expect, however, that obtaining
significantly better improvements over standard theories without sacrificing the
rigorous bound may be difficult.

A further study of our auxiliary variational method for inference may also
be motivated from a different perspective. Note that even in situations when
the exact posterior may be accurately approximated by a factorized uni-modal
distribution, finding such good factorized approximations by using the standard
techniques may be complicated. While our results suggest that increasing the
cardinality of the auxiliary variables, or using richer structures of variational
decoders helps to produce better lower bounds on the partition function (by
missing less of the probability mass), at this stage it remains largely unclear
how helpful the auxiliary variables could be for preventing convergence of each
component of the variational distribution to a suboptimal local mode of the exact
posterior. A part of our motivation for further exploration of the method is
the reported success of the auxiliary sampling techniques, which often result in
efficient exploration of the distribution (by allowing potentially large changes in
clusters of variables). Motivated by this observation, we are planning to continue
studying our framework by empirically applying it to real-world tasks, as well as
analyzing the theoretically achievable improvements over simple bounds for other
choices of constraints on the auxiliary conditional distribution.

Summary

To summarize, we note that for the purpose of finding informative representations
of the data, learning by maximizing the mutual information in encoder models is
an alternative to learning probability models of the observations. In some cases,
e.g. when specific tasks require explicit parameterization of the encoding distribu-
tion, information-maximization in encoder models may be the method of choice.
It may be particularly attractive for clustering and constrained dimensionality
reduction (for both deterministic and intrinsically noisy encoding mappings). An
example of an intrinsically noisy channel is a model of a biological network (for
example, a retinal encoder model defining a mapping from photoreceptors to
ganglion representations in the retina), where a choice of constraints on encoder
parameters is motivated by physiological properties of biological systems.

An important practical complication of maximizing mutual information in
stochastic environments is high computational complexity of the exact optimiza-
tion procedure, which is only tractable in a few simple special cases. In this thesis
we suggested a general variational framework for maximizing a family of proper
lower bounds on mutual information in stochastic environments. It turned out
that in its simplest formulation our framework led to the same fixed points as the

167



approaches aiming to optimize the variational Jensen’s bounds on the likelihoods
of stochastic self-supervised models; however, our method is computationally and
representationally simpler than naive applications of the variational EM for such
models. Additionally, our approach may be easily generalized to define richer
types of bounds on mutual information which formally generalize simpler ap-
proximations. We believe that this makes our method potentially useful as a
general variational framework for approximate information maximization.

We note, however, that the simple formulation of the suggested framework
may in some cases be limited. Specifically, our empirical experience and intuition
suggest that using parametric or structurally constrained variational decoders for
approximating moments of the exact posterior p(x|y) may in some cases be too
restrictive (for example, this is the case for error-correction in binary symmetric
channels). This follows from the fact that the IM-optimal constrained variational
decoder computes the marginal estimates which are good on average (for all pos-
sible codewords {y}). Thus, for any specific codeword y a constrained IM-optimal
decoder may often be inferior to standard approximation theories. In future work
it will be interesting to see whether or not using the IM framework for learning
the optimal encoder may improve on standard inferences in the resulting mod-
els. Improving our framework to be competitive for error correction applications
may be particularly interesting and challenging, as this is one case where a naive
application of our approach is not expected to work well.

Despite the apparent limitations of our framework, we believe that the results
presented in this work may be potentially interesting from several perspectives.
First of all, in contrast to the majority of the existing approximations of I(x, y)
(see e.g. Brunel and Nadal (1998), Kang and Sompolinsky (2001), Torkkola
(2000), Gokcay and Principe (2002), Szummer and Jaakkola (2002), Corduneanu
and Jaakkola (2003)), our method optimizes a proper lower bound, rather than
a surrogate objective criterion or an approximation of I(x, y) (which may only
be accurate under specific asymptotic assumptions, and weak or even undefined
when the assumptions are violated). Secondly, the flexibility of the choice of the
variational distribution makes it possible to generalize and improve other bounds
on mutual information. For example, we may tractably extend our method to
the family of auxiliary variational bounds on I(x, y), which may be used to im-
prove on any simple generic approach without altering properties of the original
channel. Moreover, in contrast to other approaches (e.g. Lawrence et al. (1998),
Jaakkola and Jordan (1998), Brunel and Nadal (1998)), our method may be eas-
ily generalized to the structured context. Finally, we can demonstrate that by
applying the IM framework to optimizing the bounds on I(x, y) in the augmented
space of encoder and variational decoder parameters, we can often obtain simpler
optimization procedures than those resulting from expressing the bounds as func-
tions of the encoder alone. This leads to an interesting observation that in some
cases the IM framework may be used to derive optimization procedures which
only require local computations. This may be particularly attractive from the
the neuro-biological, but also from the computational perspectives.

Possibly the most important contribution of this work is a rigorous and gen-
eral variational framework for maximizing the mutual information in intrinsically
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intractable channels. We show that it leads to simple, stable, and easily general-
izable optimization procedures, which (despite some intrinsic constraints) outper-
form and supersede many of the common approximate information-maximizing
techniques.
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Appendix A

Linsker’s Bound: Centering in the

Code Space

A brief comment about centering the data in the code space is in order. Consider
the as-if Gaussian objective

IG(x, y) ∝ log
∣
∣〈xxT 〉 − log〈xxT 〉 − 〈xyT 〉〈yyT 〉−1〈yxT 〉

∣
∣ (A.1)

with source vectors x and codes y (see Section 2.2.2). Here all the averages are
computed over p(x, y) = p̃(x)p(y|x), where p(y|x) is the encoder and p̃(x) is the
empirical distribution. In Section 2.2.2 we showed that (A.1) is in fact a special
case of the generic lower bound on I(x, y)

Ĩ(x, y) = 〈log q(x|y)〉p̃(x)p(y|x) + const (A.2)

for the variational decoder q(x|y) ∼ Nx(Uy,Σ), where we assumed 〈x〉p(x) = 0
and 〈y〉p(y) = 0. In practice, centering the source vectors {x} should not be
problematic, since transformations of the sources are not explicitly affected by
parameterization of the encoder p(y|x). In some cases, 〈x〉p(x) = 0 ⇒ 〈y〉p(y) = 0
[for example, this is the case for linear Gaussian encoders p(y|x) ∼ Ny(Wx, σ2I|y|)].
However, in general the assumption of the centered encodings {y} implies addi-
tional constraints on the encoder distribution p(y|x), which may in general be
difficult to enforce.

We will now consider non-centered codes (i.e. 〈y〉p(y) 6= 0) and a more general
form of the linear Gaussian variational decoder, namely q(x|y) ∼ Nx(Uy + µ,Σ).
A straight-forward substitution into (A.2) then results in

Ĩ(x, y) = −
1

2

〈
tr

{
Σ−1(x − Uy − µ)(x − Uy − µ)T

}〉

p(x)p(y|x)
−

1

2
log |Σ| + const.

(A.3)
Then by maximizing Ĩ(x, y) for µ ∈ R

|x| we obtain µ = −U〈y〉. By comparing
the mean of the reconstructed sources (computed for the variational distribu-
tion q(x|y)) with the empirical mean of the source vectors, we easily see that
〈x〉q(x|y)p(y) = U〈y〉p(y) + µ = 〈x〉p(x) = 0, i.e. the variational decoder does not
introduce a bias into the reconstructions. By substituting µ = U〈y〉 ∈ R

|y| and
solving for U ∈ R

|x|×|y| and Σ ∈ R
|x|×|x|, we obtain

Ĩ(x, y) = − log |Σxx − ΣxyΣ
−1
yy Σyx|, (A.4)
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where we ignored the irrelevant constants and let Σxx = 〈xxT 〉, Σxy = ΣT
yx =

〈xyT 〉, and Σyy = 〈yyT 〉 − 〈y〉〈y〉T . This is exactly the general form of Linsker’s
as-if Gaussian criterion (see expression (1.16)).
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Appendix B

Analysis of Variational Information

Maximization

Here we outline several simple relations of the variational lower bound on mutual
information to the standard variational bounds on the likelihood and conditional
likelihood. Section B.1 discusses the case of conditional likelihood training in
general feed-forward models. A curious result derived there is a simple decoder-
specific upper bound on the conditional log-likelihood. Section B.2 discusses a
relation of the generic lower bound on I(x, y) for noiseless or Gaussian channels to
the standard bound on the likelihood for flat mixtures. Effectively, it illustrates
a sufficient condition for the variational EM and IM algorithms to converge to
identical fixed points.

B.1 Variational Information Maximization and Feed-

Forward Models

Here we will prove proposition 3.3. By analogy with Section 3.3.1, we will define
the feed-forward and the conditional encoder models as

MC
def
= p(y|x)p(x̃|y), MIC

def
= p̃(x, x̃)p(y|x, x̃), (B.1)

where p(y|x, x̃) is the exact posterior of MC .

Proposition B.1. For i.i.d. patterns {x, x̃}, conditional likelihood learning in
the feed-forward model MC corresponds to maximization of a lower bound on
the conditional mutual information I(x̃, y|x) in MIC. Up to irrelevant constants,
this bound is weaker or as tight as ÎC(x̃, y|x) = 〈log p(x̃|x, y)〉p(y|x,x̃)p̃(x,x̃).

Proof. It is easy to see that for i.i.d. data, the average conditional log-likelihood
(3.29) may be expressed as

Lx̃|x = 〈log p(x̃|x)〉p̃(x̃,x)

= 〈log p(y|x) + log p(x̃|x, y) − log p(y|x, x̃)〉p̃(x,x̃) , (B.2)
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where p̃(x, x̃) is the empirical distribution, and y is a latent variable in the condi-
tional p(x̃, y|x). By averaging both parts of (B.2) over the exact posterior p(y|x, x̃),
we obtain

Lx̃|x = 〈log p(x̃|x, y)〉p(y|x,x̃)p̃(x,x̃) − 〈KL(p(y|x, x̃)‖p(y|x))〉p̃(x,x̃) . (B.3)

We will assume that p(x̃, y|x) is in the tractable family, i.e. no variational re-
laxations of the conditional likelihood are required to perform the computations
in (B.3). Note that the Kullback-Leibler divergence in (B.3) cancels if and only
if p(y|x, x̃) ≡ p(y|x), which is generally not the case for stochastic feed-forward
models.

By definition, the conditional mutual information I(x̃, y|x) in the correspond-
ing recognition model MIC may be expressed as

I(x̃, y|x) = Hp̃(x̃|x) + 〈log p̃(x̃|y, x)〉p̃(y|x,x̃)p̃(x,x̃)

= Hp̃(x̃|x) + 〈log p̃(x̃|y, x)〉p(y|x,x̃)p̃(x,x̃), (B.4)

where p̃(y|x, x̃) = p(y|x, x̃) by construction (3.30), Hp̃(x̃|x)
def
= −〈log p̃(x̃|x)〉p̃(x,x̃) is

the entropy of the empirical distribution (independent of the functional parame-
ters), and p̃(x̃|y, x) is the Bayes-optimal decoder of MIC given by

p̃(x̃|y, x) ∝ p(y|x, x̃)p̃(x, x̃). (B.5)

Here p(y|x, x̃) is the exact posterior of the feed-forward model MC . Again, it is
easy to see that due to the mixture form of the Bayesian decoder p̃(x̃|y, x), the
exact evaluations of the conditional mutual information I(x̃, y|x) are in general
computationally intractable. However, we may re-define the generic lower bound
on the mutual information (2.2) for the conditional case, and obtain a tractable
bound on (B.4) as

I(x̃, y|x) ≥ ÎC(x̃, y|x)
def
= Hp̃(x̃|x) + 〈log p(x̃|x, y)〉p(y|x,x̃)p̃(x,x̃), (B.6)

which is saturated if and only if p(x̃|x, y) ≡ p̃(x̃|x, y). For the considered case of
tractable distributions p(x̃, y|x), the bound (B.6) will also be tractable. Moreover,
from the non-negativity of the KL divergence we get

ÎC(x̃, y|x) ≥ Hp̃(x̃|x)+〈log p(x̃|x, y)〉p(y|x,x̃)p̃(x,x̃)−〈KL(p(y|x, x̃)‖p(y|x))〉p̃(x,x̃) , (B.7)

which by transitivity leads to

I(x̃, y|x) ≥ ÎC(x̃, y|x) ≥ Hp̃(x̃|x) + Lx̃|x. (B.8)

The result shows that the conditional likelihood training in chains MC may be
viewed as maximization of a specific lower bound on I(x̃, y|x) in the corresponding
conditional encoder models MIC . Alternatively (and perhaps more intuitively),
we may view the result as an upper bound on Lx̃|x. From proposition 3.3 we may
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immediately obtain an upper bound on the average log-probability of produc-
ing the required outputs x̃ from the encodings y with the chosen model-specific
decoder p(x̃|y):

Lx̃|x =
1

M

M∑

i=1

log p(x̃ = x̃(i)|x = x(i)) ≤
1

M

M∑

i=1

〈log p(x̃(i)|y)〉p(y|x(i),x̃(i))

︸ ︷︷ ︸

ÎC(x̃,y|x)+const

,(B.9)

where (x(i), x̃(i)) ∈ XC is the ith source-output pair of the training set XC =
{(x(i), x̃(i))|i = 1, . . . ,M}. For the case when x̃(i) = x(i) for all M training pat-
terns, the feed-forward model MC becomes an autoencoder, and the conditional
likelihood defines the probability of correct reconstructions of the training set.
Note that the bound (B.9) is fundamentally different from Fano’s inequality
(3.1) in the sense that (B.9) is a functional of the decoder distribution p(x̃|y),
while Fano’s result (3.1) ignores any knowledge about the specific distributions
used for source reconstructions. Moreover, whilst Fano’s bound on reconstruc-
tion error is tractable only for simple channels where it is possible to compute
I(x, y) = H(y) − H(y|x) exactly, our result (B.9) does not require computations
of entropies of mixture distributions.

B.2 Variational Information Maximization and Flat

Mixture Models

Here we compare variational information maximization (IM) and variational ex-
pectation maximization (EM) for flat latent variable models (i.e. generative mod-
els where the latent variables are uniformly distributed).

Let ML
def
= q(y)q(x|y) define a latent variable model, where x is a data pattern,

and y is its latent variable representation. (NB: we change the conventional
notations for the purpose which will soon become clear). Following the standard

variational procedure of maximizing the log-likelihood L
def
= 〈log q(x)〉p̃(x) in the

generative model ML, it is straight-forward to obtain the standard variational
Jensen’s bound on L

L =

〈

log

∫

y

q(x, y)dy

〉

p̃(x)

=

〈

log

∫

y

q(x, y)
p(y|x)

p(y|x)
dy

〉

p̃(x)

≥ 〈log q(x|y)〉p(y|x)p̃(x) − 〈KL(p(y|x)‖q(y))〉p̃(x)
def
= L̃, (B.10)

where we have applied Jensen’s inequality (e.g. Jensen (1906), Hardy et al.
(1988)). Here p̃(x) is the empirical distribution, and p(y|x) is a variational distri-
bution approximating the true posterior q(y|x) ∝ q(y)q(x|y) expressed from the
generative model ML. As usual, in order to simplify computations of (B.10),
the variational posterior p(y|x) needs to be constrained to ensure tractability of
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computing the averages. The standard variational extension of the expectation-
maximizing algorithm (see e.g. Neal and Hinton (1998)) trains the generative
model ML by iteratively optimizing (B.10) with respect to the model parameters
q(y), q(x|y), and the variational posterior p(y|x).

Note that we can equivalently express the bound (B.10) as

L̃ = 〈log q(x|y)〉p(y|x)p̃(x) + 〈log q(y)〉p(y|x)p̃(x) + 〈H(p(y|x))〉p̃(x), (B.11)

where H(p(y|x))
def
= −〈log p(y|x)〉p(y|x). It is now straight-forward to see that for

the case of uniform code distributions (q(y) ∼ Uy) with deterministic variational
posteriors (p(y|x) ∼ δ), maximization of the bound (B.11) reduces to optimizing

L̃ = 〈log q(x|y)〉p̃(x)p(y|x) + const. (B.12)

Up to irrelevant constants, the bound on the likelihood for this case is in fact
the generic lower bound (2.2) on the mutual information for the noiseless channel

model MI(x, y)
def
= p̃(x)p(y|x), which uses the variational posterior of L̃ as the

encoder distribution, i.e.

Ĩ(x, y) = Hp̃(x) + 〈log q(x|y)〉p̃(x)p(y|x), where p(y|x) ∼ δ. (B.13)

Here the variational decoder q(x|y) of the bound Ĩ(x, y) is the conditional of
the latent variable model ML. From (B.12) and (B.13), we can see that for
i.i.d. patterns {x}, maximization of the standard variational lower bound on
the likelihood in a flat latent variable model with a deterministic variational
posterior p(y|x) reduces to maximizing the generic lower bound on the mutual
information in the corresponding noiseless channel.

Note that the same result holds if p(y|x) is a Gaussian with a fixed covariance.
Indeed, if p(y|x) ∼ Ny(f(x),Σ), the entropic term in (B.11) is a function of the
fixed noise covariance Σ, i.e. up to irrelevant constants the bound L̃ defined by
(B.11) is identical to the generic lower bound on the mutual information (B.13)
for the corresponding Gaussian channel.

The result may be trivially generalized to flat mixtures of latent variable

models MLH(x, y, z)
def
= q(y)q(z)q(x|y, z) with deterministic variational posteriors

p(x|y, z) ∼ δ and flat priors on the latent variables q(y) ∼ Uy and mixture coeffi-
cients q(z) = 1/|z| (here we assumed that x ∈ R

|x|, y ∈ R
|y|, and z ∈ {1, . . . , |z|}).

By analogy with (B.11)– (B.13), it is easy to see that optimization of the standard
variational lower bound on L for this case reduces to maximizing the generic lower
bound on I(x, {y, z}) in the corresponding noiseless hybrid channel x → {y, z}

ĨH(x, {y, z}) = H(x) + 〈log q(x|y, z)〉p̃(x)p(y|x)p(z|x), (B.14)

where p(y|x) ∼ δ, p(z|x) ∼ δ, and q(x|y, z) is the conditional of the generative
mixture of latent variable models MLH(x, y, z). Similar results hold if p(z|x) ∼ δ
and p(y|x) ∼ Nx(f(x),Σ) where Σ is fixed. In the encoder model formulation, the
fixed covariance corresponds to the irreducible independent channel noise.

To summarize, we may note that while generally the optimization surfaces
defined by the standard variational lower bounds on the likelihood and the generic
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variational lower bounds on the mutual information are different, the obtained
solutions coincide for flat mixture models ML with deterministic variational pos-
teriors, and the corresponding noiseless encoder models MI (where the variational
decoding distribution corresponds to the conditional of the generative model).
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Appendix C

Variational Information

Maximization for Isotropic Gaussian

Channels

Here we analyze properties of the variational IM algorithm for isotropic Gaussian
channels x → y. Specifically, we focus on the theoretical analysis of the bounds on
I(x, y) for nonlinear Gaussian encoders p(y|x) ∼ Ny(φ(x), σ2I). As usual, we will
presume intractability of explicit computations in R

|φ|, and derive a kernelized
extension of the generic lower bound

I(x, y) ≥ Ĩ(x, y)
def
= H(x) + 〈log q(x|y)〉p(x,y).

As the variational information-maximizing framework offers flexibility in choos-
ing optimal variational decoders q(x|y), we consider optimizing Ĩ(x, y) for several
of such choices. As the first obvious choice, we consider using linear Gaussian
decoders, which simplifies computations of the bound and facilitates the analysis
of optimal solutions for the encoder parameters. Our motivation here is to check
whether there is any gain in using nonlinearities of the codes if the variational
decoder distribution remains linear. As expected, we show that linear Gaussian
variational decoders may indeed be too restrictive. Specifically, we show that in
the case of the isotropic noise of Gaussian channels, nothing is gained by using
nonlinear encoders and linear decoders in the context of variational information
maximization. This agrees with the more specific result for noiseless one-layer
autoencoders with linear output units (Bourlard and Kamp (1988), Bourlard
(2000)), but is derived for stochastic channels with arguably less specific choices
of nonlinearities.

Then we consider variational information maximization for nonlinear vari-
ational decoders. Since the choice of nonlinearity may significantly influence
the complexity of computing variational lower bounds Ĩ(x, y), relaxations of the
generic variational procedure may need to be considered. We show that the
generic lower bound Ĩ(x, y) may indeed be formally modified to ensure tractable
computations. This naturally relaxes the bound on I(x, y) to provide an objec-
tive function for Kernel PCA. By analogy with a simpler case of discrete nonlin-
ear channels (see Section 5.2.3), the information-theoretic formulation suggests a
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proper way for learning kernel parameters of KPCA models; however, the choice
of constraints on the kernel matrices will prove to be crucial for avoiding degen-
erate (asymptotically noiseless) solutions.

Throughout the discussion in this chapter, we will make several references
to the optimal bound on I(x, y) for isotropic linear Gaussian decoders q(x|y) ∼
Nx(Uy, σ2I). This is a more constrained variational decoder than the correlated
linear Gaussian (which gives rise to Linsker’s as-if Gaussian approximation, see
Section 1.4, 4.1.1). However, the solutions obtained for this case will prove to be
important for considering nonlinear generalizations of the bound Ĩ(x, y), so we
will discuss them first. Then in Appendix C.2 we will move to a discussion of
nonlinear Gaussian channels.

C.1 Linear Gaussian Channels: Linear Decoders

p(y|x) ∼ Ny(Wx, s2I), q(x|y) ∼ Nx(Uy, σ2I)

Let the encoder and decoder be given by p(y|x) ∼ Ny(Wx, s2I) and q(x|y) ∼
Nx(Uy, σ2I) respectively. Our goal is to learn optimal settings of W ∈ R

|y|×|x| and
U ∈ R

|x|×|y| (for fixed decoder and encoder variances σ2 and s2) by maximizing
the simple variational bound (4.1) on the mutual information, which in this case
is expressed as

Ĩ(x, y) =
1

σ2
tr {UWS} −

1

2σ2
tr

{
UΣUT

}
−

1

2σ2
tr {S} + c. (C.1)

Here c = −|x|/2 log(2πσ2) is a constant which does not affect the optimization
surface for the encoder and decoder weights,

S = 〈xxT 〉 =
1

M

∑

m

x(m)
(
x(m)

)T
(C.2)

is the sample covariance of the centered data, and

Σ = Is2 + WSWT ∈ R
|y|×|y| (C.3)

is the covariance of the marginal distribution of responses p(y). In the following
we assume that the weights W and U are non-singular, which in our context
means that the dimensionality of the codewords |y| is sufficiently low. Note that
we make no parametric assumptions about the distribution of the sources p(x) or
non-singularity of the sample covariance S.

Unsurprisingly, objective (C.1) is closely related to the least squares recon-
struction error in a linear autoencoder. What is interesting in this context that it
provides a proper bound on the mutual information, independently of the source
distribution.
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C.1.1 Nature of Optimal Solutions

Unconstrained optimization of (C.1) for the encoder’s weights W leads to the
extremum condition

UT S = UT UWS. (C.4)

By assuming that y is a compressed representation of the source x (i.e. |x| > |y|),
we obtain WS = (UT U)−1UT S ∈ R

|y|×|x|. (It is safe to assume non-singularity;
indeed, if UT U is singular, we may ensure non-singularity by reducing dimension-
ality of the codewords). Then it is clear that

tr
{
UWSWT UT

}
= tr

{
UWSWT UT

}
= tr

{
(UT UWS)WT

}

= tr {UWS} = tr
{
U(UT U)−1UT S

}
, (C.5)

leading to
tr

{
UΣUT

}
= tr

{
U(UT U)−1UT S

}
+ s2tr

{
UUT

}
. (C.6)

By substituting expression (C.6) into (C.1), we may express the bound as a
function of the decoder alone as

Ĩ(x, y) =
1

2σ2
tr

{
U(UT U)−1UT S

}
−

s2

2σ2
tr

{
UUT

}
−

1

2σ2
tr {S} , (C.7)

where we have ignored the irrelevant constant c.
Let U = VLRT be the singular value decomposition of the decoder weights

U (see e.g. Golub and Loan (1996)). By definition, L ∈ R
|y|×|y| is diagonal and

invertible, and V ∈ R
|x|×|y|, R ∈ R

|y|×|y| are orthogonal, so that VT V = RT R =
RRT = I|y|. From (C.4) it is clear that W = RL−1VT , i.e. WU = I|y|. Substitution
into (C.7) results in

Ĩ(x, y) ∝ tr
{
VT SV

}
− s2tr

{
L2

}
− tr {S} , (C.8)

which is a function of the decoder’s singular vectors and scalings. Optimizing
(C.8) for V under the orthonormality constraints on V, we readily obtain the
PCA solution (and its rigid rotations). It is clear that in the case of a noiseless
channel (s2 → 0), the solutions are invariant with respect to the scalings L.

For noisy channels (i.e. for s2 > 0), maximization of (C.8) with respect to the
scalings of the decoder weights results in L → 0, which leads to the divergence
of the Frobenius norm ‖W‖F . Effectively, this corresponds to an approximately
noiseless encoder, since distinct source patterns will be mapped to codes which
are infinitely spread out in the code space, so that the contribution of the finite
channel noise to the bound (C.1) becomes negligible. In order to find the optimal
bases of the subspaces spanned by the encoder and decoder weights W and U, we
may constrain their singular values. It is straight-forward to see that in this case
the right singular vectors of the optimal encoder weights W span the principal
subspace of S (see e.g. Bishop (1995)). It is also clear that the obtained solutions
are invariant under complimentary rotations of W and U.

This demonstrates the simple result that for the considered variational prob-
lem, the optimal lower bound on I(x, y) is provided by PCA. Furthermore, by
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comparing this result with Linsker’s as-if Gaussian bound (see Section 4.1.1), we
see that for the considered channel nothing is gained by learning full covariances
of linear Gaussian variational decoders. As before, this conclusion is reached
without the need for a Gaussian assumption about the source distribution. It
is intuitively clear that in order to go beyond the PCA solutions, more complex
encoders/decoders are required. In the following section we consider the effects of
increasing the complexity of the encoder, while still using a simple linear Gaussian
variational decoder defined above.

C.2 Nonlinear Gaussian Channels: Linear Decoders

p(y|x) ∼ Ny(Wφ(x),Σy), q(x|y) ∼ Nx(Uy,Σx)

Here we consider the case of a nonlinear Gaussian channel with the encoder
p(y|x) ∼ Ny(Wφ(x),Σy) and decoder q(x|y) ∼ Nx(Uy,Σx). Note that for all the
data points {x(m)|m = 1, . . . ,M}, the set of encodings {y(m)} is given by a noisy
linear projection from the (potentially high-dimensional) feature space {φ(x(m))}.
In what follows we assume that |φ| > M , i.e. dimensionality of the feature space
exceeds the number of training patterns.

It is easy to see that for the considered case the lower bound on the mutual
information I(x, y) is given by

Ĩ(x, y) = −
1

2
tr

{
Σ−1

x S
}

+ tr
{
Σ−1

x UW〈φ(x)xT 〉
}

−
1

2
tr

{
UTΣ−1

x U
(
Σy + W〈φ(x)φ(x)T 〉WT

)}
. (C.9)

As before, we assume that S = 〈xxT 〉 =
∑

m x(m)(x(m))T /M is the sample covari-
ance of the zero-mean data, and the averages are computed with respect to the
empirical distribution p̃(x) = (1/M)

∑M
m=1 δ(x − x(m)). Also, by analogy with

Section 5.2.3 we assume that for high-dimensional feature spaces direct evalu-
ation of the averages is implausible. It is therefore desirable to avoid explicit
computations in {φ}.

C.2.1 Kernelized Representation

Since each row w̃T
i ∈ R

1×|φ| of the weight matrix W ∈ R
|y|×|φ| has the same

dimensionality as the feature vectors φ(x(i))T , it is representable as

w̃i =
M∑

m=1

αimφ(x(m)) + w̃⊥
i , (C.10)

where w̃⊥
i is orthogonal to the span of φ(x(1)), . . . , φ(x(M)). Then

W = AFT + W⊥, F
def
=

[
φ(x(1)), . . . , φ(x(M))

]
∈ R

|φ|×M , (C.11)
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where A = {αij} ∈ R
|y|×M is the matrix of coefficients, and the transposed rows of

W⊥ are given by w̃⊥
i . In kernel literature F is often referred to as the design matrix

(e.g. Williams (1998), MacKay (1997), Cristianini and Shawe-Taylor (2000)).
From (C.11), we obtain expressions for the averages

W〈φ(x)xT 〉 = A
〈[

φ(x(1))T φ(x), . . . ,φ(x(M))T φ(x)
]T

xT
〉

=
A

M

[
∑

m

x(m)φ(x(m))T φ(x(1)), . . .

]T

=
ABT

M
∈ R

|y|×|x|, (C.12)

where we defined

B
def
=

M∑

m=1

x(m)k(x(m))T ∈ R
|x|×M , k(x(m))

def
= FT φ(x(m)) ∈ R

M (C.13)

and used the fact that from the orthogonality assumption (C.11) we get W⊥F =
0 ∈ R

|x|×M . Here k(x(m)) corresponds to the mth column of the Gram matrix

K
def
= {Kij}

def
= {φ(x(i))T φ(x(j))} ∈ R

M×M . Clearly, for a fixed KR
M×M , the

computed expectation W〈φ(x)xT 〉 is a function of the coefficients A ∈ R
|y|×|M |,

which does not require explicit computations in the high-dimensional feature
space.

Analogously, we can express

W〈φ(x)φ(x)T 〉WT =
(
AFT + W⊥

) 〈
φ(x)φ(x)T

〉 (
AFT + W⊥

)T

=
1

M
A

M∑

m=1

k(x(m))k(x(m))T AT , (C.14)

where we have used the fact that W⊥F = 0, as follows from construction (C.11).
Again, for the fixed Gram matrix the term is a quadratic function of coefficients
A alone.

By substitution, we may re-express the bound (C.9) as

Ĩ(x, y) =
1

M
tr

{
Σ−1

x UABT
}
−

1

2
tr

{
UTΣ−1

x UΣy

}

−
1

2M
tr

{
UTΣ−1

x UAK2AT
}
−

1

2
tr

{
Σ−1

x S
}

+ c, (C.15)

where c = −|x|/2 log(2πσ2) does not affect the optimization surface and be ig-
nored in the rest of the discussion. In the simplest case when φ(x) ≡ x ∈ R

|x|,

we obtain K2 ∝ XT SX ∈ R
M×M , B ∝ SX ∈ R

|x|×M where X
def
= [x(1), . . . , x(M)] ∈

R
|x|×M contains the training data. As expected, this transforms the bound (C.15)

to the corresponding expression (C.7) for the linear Gaussian channel, thus re-
sulting in PCA on the sample covariance S for both the encoder and decoder
weights U, WT as the optimal choice.

The objective (C.15) may be used to learn optimal decoder weights U ∈ R
|x|×|y|

and optimal coordinates A ∈ R
|y|×|M | in the space spanned by the feature vectors

{φ(x(i))|i ∈ [1,M ] ∩ N}. Moreover, we may use the so-called kernel trick (e.g.
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Vapnik (1998), Cristianini and Shawe-Taylor (2000), Scholkopf and Smola (2002))
and compute the entries of the Gram matrix K = {Kij} ∈ R

M×M as Kij =
φ(x(i))T φ(x(j)) = K(x(i), x(j);Θ), where KΘ : |x| × |x| → R defines a symmetric
positive-definite kernel function. In principle, we may use the objective Ĩ(x, y) to
learn the optimal parameters1 of the kernel function. However, as we showed in
Agakov and Barber (2004c) and will discuss later, such learning may be strongly
influenced by the choice of constraints on channel parameters.

C.2.2 Nature of optimal solutions

In the following we assume for simplicity that Σy = s2I and Σx = σ2I. We also
assume that |y| ≤ |x| ≤ |φ| and |x| ≤ M , so that y is a compressed representation
of φ(x), and the number of training points is sufficient to ensure invertibility of
the sample covariance.

C.2.2.1 Optimal Decoder

Similarly to Appendix C.2.2, we will express the bound on I(x, y) as a function
of decoder parameters alone and analyze the optimal solutions. In order to do
this, we will first find an analytical expression for optimal encoder coefficients,
re-express the bound, and optimize it for the variational decoder.

Optimization of Ĩ(x, y) for the matrix of coefficients A ∈ R
|y|×|M | leads to the

fixed point condition

∂Ĩ(x, y)/∂A = 0 ⇒ UTΣ−1
x B = UTΣ−1

x UAK2 ∈ R
|y|×|M |, (C.16)

which for the considered isotropic case Σx = σ2I leads to

AK2 = (UT U)−1UT B ∈ R
|y|×|M |. (C.17)

Assuming that the Gram matrix K is non-singular, we obtain AK = (UT U)−1UT BK−1.
Then a substitution into (C.15) leads to

Ĩ(x, y) =
1

2Mσ2
tr

{
UAK2AT UT

}
−

s2

2σ2
tr

{
UUT

}
−

1

2σ2
tr {S}

=
1

2Mσ2
tr

{
U(UT U)−1UT BK−2BT U(UT U)−1UT

}
−

s2

2σ2
tr

{
UUT

}
−

1

2σ2
tr {S}

=
1

2Mσ2
tr

{
U(UT U)−1UT BK−2BT

}
−

s2

2σ2
tr

{
UUT

}
−

1

2σ2
tr {S} , (C.18)

where we ignored the terms independent of the decoder parameters U ∈ R
|x|×|y|.

Finally, by noticing that B = XK ∈ R
|x|×M and

BK−2BT = XXT = MS, (C.19)

we may transform the bound (C.18) to

Ĩ(x, y) =
1

2σ2
tr

{
U(UT U)−1UT XXT

}
−

s2

2σ2
tr

{
UUT

}
−

1

2σ2
tr {S} , (C.20)

1It is also possible to learn K directly by constraining it to satisfy properties of inner products;
this may be useful, for example, when the source alphabet is exhausted by M training patterns.
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which is exactly the objective of the linear Gaussian channel (C.7).
Note that optimally ‖U‖F → 0, which (for a fixed KΘ) leads to the diverging

encoder’s coefficients A ∈ R
|y|×|M |, resulting in the divergent weights ‖W‖F → ∞.

As before, this may be easily explained from the information-theoretic perspec-
tive, as the resulting channel is approximately noiseless, and therefore it is char-
acterized by a low value of the the conditional entropy H(y|x) and a high value of
the mutual information. Similarly to the case of a linear channel, the convergence
of ‖W‖F for s2 > 0 may be insured by imposing norm constraints on U ∈ R

|x|×|y|.
Then, by the exact analogy with (C.7), we can see that under the specific as-
sumption of isotropic Gaussian noise and a non-singular kernel matrix, optimal
weights U ∈ R

|x|×|y| of the linear Gaussian decoder correspond to principal com-
ponents of the sample covariance S (and their rotations). Fundamentally, we may
note that the considered linear Gaussian variational decoder restricts the power
of the approach, as for the optimal settings of encoder and decoder parameters
we cannot improve on the PCA bounds (C.7).

C.2.2.2 Optimal Encoder

For completeness, we may express the optimal encoder weights. From (C.16) it
is clear that optimal solutions for the encoder are given by

WF = AK ∝ U+X ∈ R
|y|×M , (C.21)

where U+ ∈ R
|y|×|x| denotes the pseudo-inverse, and left singular values of U ∈

R
|x|×|y| correspond to principal eigenvectors of S ∈ R

|x|×|x|. In the case when
φ(x) ≡ x ∈ R

|x| and the sample covariance XXT /M is non-singular, condition
(C.21) results in W = U+ ∈ R

|y|×|x|, which is the PCA solution of the linear
Gaussian channel. However, for general nonlinear mappings, optimal encoder
weights WT ∈ R

|x|×|y| do not necessarily give rise to the nonlinear PCA solution.
Finally, note that if the channel noise is isotropic and there are no constraints

preventing the weights from taking optimal solutions according to (C.17) and
(C.21), then the bound is given by the summation of |y| principal eigenvalues
of the sample covariance S. It is also important to note that for both of the
considered channels (with linear and kernelized Gaussian encoders), the bound
on the mutual information is maximized when the projection weights are uncon-
strained, since this situation leads to insignificant channel noise contributions.
By imposing norm constraints on the weights of a linear Gaussian decoder, both
channels are shown to result in the same optimization surface for U indepen-
dently of the choice of nonlinearity. Hence, we reach an important conclusion:
for isotropic channel noise, if the decoder is linear, nothing is gained by using a
nonlinear encoder in the proposed variational settings with the considered norm
constraints. This agrees with the related result of Bourlard and Kamp (1988)
and Bourlard (2000) for noiseless autoencoders, but is derived in the context of
variational information maximization for a stochastic channel x → y. Moreover,
in our derivation we did not have to assume approximate linearity of φ(x) around
x = 0 (cf Bourlard (2000)).

These results are somewhat disappointing. In order to improve the power of
the method, we need to consider both nonlinear encoders and decoders. However,
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from (2.2) it is clear that in the stochastic context, the naive approach of using
a nonlinear decoder will typically result in intractable averages over y in the
expression for the variational bound Ĩ(x, y). In order to avoid this computational
difficulty, we derive a modified bound on the mutual information by considering
further relaxations of the generic bound and performing decoding in the feature
space.

C.3 Nonlinear Gaussian Channels: Nonlinear De-

coders and KPCA

Since projections to the feature space are deterministic, one may derive an al-
ternative form of the bound on the mutual information. For any choice of a
functional nonlinearity φ : x 7→ f, the codes y are as predictable from the feature

vectors f
def
= φ(x) ∈ R

|φ|, as they are from the source variables x themselves.
This may be used to modify the bound on I(x, y) in such a way that the recon-
struction is performed in the feature space, which results in a simple nonlinear
generalization of the PCA solutions for optimal parameters.

The nonlinear Gaussian channel discussed in Section C.2 may be represented
by the Markov chain x → f → y, where f ∈ R

|φ| and p(f|x) ∼ δ(f − φ(x)),
p(y|f) ∼ Ny(Wf,Σy). Indeed, by marginalizing the feature variables f it is clear
that the encoder is given2 by p(y|x) =

∫

f
δ(f−φ(x))Ny(Wf,Σy) = Ny(Wφ(x),Σy).

Proposition C.1. Let s → t → r define a Markov chain, such that p(t|s) =
δ(t − f(s)), and p(r|t) is a continuous differentiable density function satisfying
∀r.∀t.p(r|t) 6= 0. Then I(s, r) = I(t, r).

Proof. From basic properties of the mutual information (see e.g. Cover and
Thomas (1991)) it is easy to see that

I(s, t; r) = H(r) − H(r|t, s) = I(t, r), (C.22)

I(s, t; r) = H(s) + H(t|s) − H(s|r) − H(t|s, r)

= I(s, r) + H(t|s) − H(t|s, r). (C.23)

Utilizing the chain structure and the deterministic mapping p(t|s), we obtain

p(t|s, r) =
δ(t − f(s))p(r|t)

∫

t
δ(t − f(s))p(r|t)

=
δ(t − f(s))p(r|f(s))

p(r|f(s))
, (C.24)

i.e. p(t|s, r) = p(t|s). Here we used f(x)δ(x−a) = lime→0 [f(a − e) + f(a + e)] δ(x−
a)/2 (see e.g. Korn and Korn (1968)). Then H(t|s, r) = H(t|s), and from (C.22),
(C.23) we obtain I(s, r) = I(t, r).

2We assume Cartesian coordinates, i.e. δ(x − a) =
∏

i δ(x(i) − ai), see e.g. Korn and Korn
(1968).
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From proposition C.1, the mutual information I(x, y) may be bounded as

I(x, y) = I(f, y) ≥ Ĩ(f, y), where Ĩ(f, y)
def
= 〈log q(f|y)〉p̃(x)p(f|x)p(y|f) + H(f). (C.25)

We make the simple assumption that the feature decoder is Gaussian, q(f|y) ∼
Nf(Uy,Σf ), which leads to

Ĩ(x, y) = −
1

2
tr

{
UTΣ−1

f U
(
Σy + WSF WT

)}
+ tr

{
Σ−1

f UWSF

}
+ H(f) + c (C.26)

where SF
def
= 〈ffT 〉p(f) ∈ R

|f|×|f| corresponds to the matrix of second-order mo-
ments in the feature space. By centering the data in the feature space (see e.g.
Schoelkopf et al. (1998)), we may also express the covariance of the feature vec-
tors; we will omit this discussion, as it proves to be secondary for the consequent
analysis.

The matrix of the second order moments is easy to compute from the training
set as

SF =
1

M

M∑

i=1

φ(x(i))φ(x(i))T , (C.27)

where f = φ(x). As expected, in the special case of linear mappings φ(x) ≡ x we
get SF = 〈xxT 〉 ≡ S, which transforms the objective (C.26) to the simpler bound
(C.1).

C.3.1 Constraints on the Feature Mappings p(f|x)

Evaluation of the bound (C.26) is complicated by the need of computing the
entropic term H(f). Despite the fact that the mapping to the feature space is
deterministic, generally we do not know explicit feature space representations
of the training patterns, i.e. numeric approximations due to Brunel and Nadal
(1998), Shriki et al. (2002), Corduneanu and Jaakkola (2003) are not directly
applicable (moreover, such approximations will not generally retain a proper
bound on I(x, y)). To simplify the problem of computing H(f), we may note
that if φ : x → f is deterministic and p̃(x) =

∑M
i=1 δ(x − x(i))/M then φ(x(i))

corresponds to a re-labeled source pattern. If no two distinct points x(i) and
x(j) in the data space are mapped to the same point in the feature space, then
H(f) = H(x) = log M/δ(0) = const, i.e. it may be ignored during the optimiza-
tion. One way to ensure that this one-to-one condition is satisfied is by imposing
inequality constraints on the kernel function, so that

∀i, j ∈ {1, . . . ,M}. Ki,i −Ki,j > ǫ > 0. (C.28)

Clearly, this is a sufficient (but not necessary) condition for the distinct sources
x(i) and x(j) to have different images in the feature space.

By enforcing the constraints, one may simply ignore the (constant) entropic
term H(f) and optimize the objective (C.26) by analogy with the simple bound
(C.1) for isotropic linear Gaussians. In conjunction with the set of constraints
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(C.28), the objective may be further optimized with respect to parameters of
the kernel function. Note that (C.26) remains a proper bound on I(x, y) for the
considered constrained nonlinear Gaussian channel.

For the considered choice of the variational feature-space decoder q(f|y) ∼
Nf (Uy, σ2

f I), we may express the corresponding stochastic mapping from the code
to the data space as q(x|y) =

∫

f
p(x|f)Nf (Uy, σ2

f I). Unfortunately, these vari-
ational posteriors may in principle be difficult to compute. This is a possible
limitation of using the variational decoders for reconstruction, since for a general
feature mapping φ(x) it may be difficult to reconstruct a source vector x from
the corresponding feature vector f. However, as we mentioned in Chapter 2.1.3,
there could be multiple ways of reconstructing source vectors from their noisy
representations. In fact, one may view optimization of the bound (C.26) as a way
of learning optimal encoders. Once the encoder p(y|x) is learned, it may be used
by any method which can perform exact or approximate inference. For example,
if the empirical distribution is available, and if it exhausts all the possible training
instances, one may retrieve the transmitted source x from the noisy encoding y
by reconstructing with the exact posterior p(x|y) ∝

∑M
i=1 δ(x − x(i))p(y|x).

C.3.2 Variational Bounds on H(f)

As we have discussed above, one way to avoid computation and optimization
of the generally intractable entropy of the feature variables H(f) is to impose
constraints on the kernel function. This ensures that H(f) = H(x) = const,
which may significantly simplify optimization of (C.26). Moreover, constraints
on the off-diagonal elements of the kernel matrices may help to avoid possible
singularities, as they will intuitively favor more uniform eigenspectra.

An alternative way to address intractability of H(f) is by relaxing the bound
on I(x, y). Clearly, from the joint rule for entropies we get

H(f) = H(f|x) + H(x) − H(x|f) ≥ H(x) + 〈log q(x|f)〉p(x,f) + c, (C.29)

where we used the fact that the mapping x 7→ f is deterministic (but of course not
in general one-to-one). By substituting (C.29) into the bound (C.25), we obtain

Ĩ(x, y) ≥ 〈log q(f|y)〉p̃(x)p(f|x)p(y|f) + 〈log q(x|f)〉p(x,f) + c (C.30)

where c are irrelevant constants. As before, we will be optimizing (C.30) with
respect to parameters of the encoder p(y|f), the feature decoder q(f|y), and the
data decoder q(x|f).

One tractable way to constrain q(x|f) is again to use a linear Gaussian q(x|f) ∼
Nx(Vf,Σx|f ). This parameterization results in a simple linear Gaussian decoder
q(x|y) with a structured covariance matrix, which may be easily used for varia-
tional decoding. Other tractable parameterizations may also be possible. Indeed,
since integration over x and f reduces to evaluations of the empirical averages,
computing the average 〈log q(x|f)〉p(x,f) is easy for any data decoder q(x|f) (pro-
vided that it is kernelized, so that there are no explicit computations in the feature
space). Fundamentally, however, the choice of the data decoder q(x|f) does not
affect the nature of optimal solutions for parameters of the encoder and feature
decoder, provided that at each iteration of the IM the kernel function KΘ is fixed.
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C.3.3 Kernelized Representation

Here we show that for a fixed kernel function KΘ, optimal parameters of the
encoder p(y|f) ∼ Ny(Wf,Σy) and feature decoder q(f|y) ∼ Nf(Uy,Σf ) result in
a simple nonlinear generalization of the PCA solutions, which justifies nonlinear
PCA as a lower bound on mutual information I(x, y) between the sources and
the codes3.

In what follows we assume that Σy = s2I ∈ R
|y|, Σf = σ2

f I ∈ R
|φ|, and

|y| < M < |φ|. By analogy with Section C.2 we notice that rows of W and
columns of U have dimension |φ|. Then they may be represented in the basis
defined by the span of {φ(x(m))|m = 1, . . . ,M} and its orthogonal compliment as

W = AFT + W⊥ ∈ R
|y|×|φ|, (C.31)

U = FC + U⊥ ∈ R
|φ|×|y|. (C.32)

Here F ∈ R
|φ|×M is the design matrix, U⊥, W⊥ are orthogonal to F, and A ∈

R
|y|×M , C ∈ R

M×|y| are matrices of coefficients to be learned. A substitution into
expression (C.30) results in

Ĩ(x, y) ∝ 2tr
{
CAK2

}
− s2Mtr

{
CT KC

}
− tr

{
AK2AT

[
CT KC + (U⊥)T U⊥

]}

−Ms2tr
{
(U⊥)T U⊥

}
− tr {K} +

1

2Mσ2
f

〈log q(x|f)〉p(x,f), (C.33)

where we have used the orthogonality conditions W⊥F = 0 ∈ R
|y|×M and FT U⊥ ∈

R
M×|y|. It is clear that unconstrained optimization of the objective (C.33) for the

complimentary basis U⊥ leads to U⊥ = 0 ∈ R
|φ|×|y|.

The objective (C.33) may be readily used for learning coefficients A, C and
parameters of q(x|f). In the considered case it may also be applied to learning
parameters Θ of the kernel function KΘ(x(i), x(j);Θ) which gives rise to the Gram
matrix K.

C.3.4 Nature of Optimal Solutions

Optimization of the bound (C.33) for the coefficients A leads to

∂Ĩ(x, y)/∂A ∝ CT K2 − CT KCAK2, (C.34)

resulting in
A = (CT KC)−1CT (C.35)

for the case when the Gram matrix K ∈ R
M×M is non-singular. This transforms

the objective (C.33) to

Ĩ(x, y) = tr
{
K2C(CT KC)−1CT

}
− s2Mtr

{
CT KC

}
+ const. (C.36)

3For clarity, we assume that the feature vectors f ∈ R
|φ| are centered (see e.g. Schoelkopf

et al. (1998)); otherwise we would consider p(y|f) ∼ Ny(W(f−〈f〉),Σy), q(f|y) ∼ Nf(Uy+〈f〉,Σf ).
Note that the explicit computations in the feature space will not be required, as evaluation of
〈log q(f|y)〉 will only involve computations of scalar products of the feature vectors.
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Here we ignored the terms independent of the coefficients A and C, and used
parameterization (C.31 – C.32) with the optimal settings U⊥ = 0. Moreover, for
the fixed kernel matrix K we obtain

Ĩ(x, y) = Mtr
{
FT SF FC(CT FT FC)−1CT

}
− s2Mtr

{
CT FT FC

}
+ const

∝ tr
{
U(UT U)−1UT SF

}
− s2tr

{
UUT

}
+ const. (C.37)

By analogy with Section C.2, maximization of (C.37) gives rise to the nonlinear
PCA solution (and rotations) for the left singular vectors of U and WT . (As
before, we have ignored W⊥ and U⊥ in the definitions (C.31), (C.32) since they
should optimally cancel).

Just as in the linear case, in order to prevent divergence of ‖W‖F for s2 6= 0, it
is useful to constrain the singular values of U ∈ R

|x|×|y|. In the special case when
UT U = CT KC = I|y|, expressions (C.32) and (C.37) lead to the optimal settings

K2CR = KCRλSF
∈ R

M×|y|. (C.38)

Here λSF
∈ R

|y|×|y| is a diagonal matrix of |y| eigenvalues of SF (and K), and
R ∈ R

|y|×|y| is a rotation matrix. From (C.35) and (C.38) it is clear that optimal
C and AT correspond to rotations of principal eigenvectors of the Gram matrix
K, which is the kernel PCA solution. Hence, for a fixed kernel function KΘ and
data decoder q(x|f) of a nonlinear Gaussian channel, the variational lower bound
Ĩ(x, y) is maximized by the kernel PCA solutions for encoder and feature decoder
weights.

C.3.5 Optimal Kernel Functions

The bound (C.30) enables us, in a principled way, to choose between different pa-
rameters of the kernel function, or to choose between competing kernels. Indeed,
for any kernelized representation of the data decoder q(x|f), optimal parameters
Θ of the kernel function KΘ : |x| × |x| → R may be obtained by maximizing the
general objective (C.30). Another alternative which we have discussed is opti-
mization of (C.26) subject to the distance constraints on the Gram matrix (C.28).
The optimization procedure may be viewed as a special case of the IM algorithm,
which for this case may be formulated as follows:

1. For the fixed KΘ, optimize the bound (C.26) with respect to U, W (or the
dual parameters C, A), and parameters of the data decoder q(x|f).

2. For the fixed C, A, and q(x|f), optimize the bound (C.26) with respect to
the kernel parameters Θ of KΘ.

Depending on parameterization of the data decoder q(x|f) or the choice of con-
straints (C.28), this procedure generally results in non-trivial settings of the kernel
parameters Θ.
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C.3.5.1 Learning Kernel Functions for KPCA Channels

Before discussing a general way of optimizing the bound (C.26) for kernel param-
eters Θ, we will mention a simple pitfall of a careless interpretation of projections
into the feature space. Effectively, this case corresponds to learning optimal ker-
nels for KPCA channels by maximizing I(f, y).

As discussed in Section C.3.1, by presuming that no two data patterns x(i), x(j)

have identical feature space representations ∀i 6= j, one could ignore the entropic
term H(f) and optimize the simpler bound (C.37) instead. In our variational
formulation, this would correspond to a simple special case when the contribu-
tion of the data decoder 〈log q(x|f)〉p(x,f) to the bound (C.26) is independent of
parameters of the kernel function KΘ; for example, this is the case for the trivial
feature-independent setting of the variational data decoder q(x|f) ≡ q(x). In our
framework, this special case would effectively be identical to the unconstrained
learning of optimal kernel transformations for nonlinear PCA channels.

For this case, optimization of the objective (C.37) for Θ would reduce to
maximizing

Ĩ(x, y) = 〈log q(f|y)〉p(f,y) = −
1

2
log

(
σ2

y + tr {K} − tr
{
CT KC

})
, (C.39)

where the matrix of the decoder coefficients C ∈ R
M×|y| performs PCA on K ∈

R
M×M (see expressions (C.37), (C.38) and the discussion in section C.3.2). Equiv-

alently, it may be written in terms of the eigenvalues of the Gram matrix as

Ĩ(x, y) = −
1

2
log



σ2
y +

M∑

i=|y|+1

λi(K(Θ))



 , (C.40)

where λi(K(Θ)) is the ith principal component of the Gram matrix K ∈ R
M×M

corresponding to the kernel function KΘ (everywhere in our discussion, we implied
that K = K(Θ) is a function of the kernel parameters Θ).

Clearly, an alternative formulation of the optimization problem for Θ in this
case is given by

Θ⋆ = arg max
Θ

|y|
∑

i=1

λi(K(Θ)), (C.41)

where Θ⋆ indicates the optimal kernel parameter settings. It is easy to see that
if the achievable ranks and norms of K(Θ) are unconstrained, nothing would
prevent the method optimizing (C.41) from generating degenerate Gram matrices
(Agakov and Barber (2004c)). In fact, there are at least two possible sources of
degeneracy of K: due to the norm divergence and due to K’s singularity. The
first case is somewhat analogous to what has been described for the simple linear
case (see Section C.1). It arises, for example, when Θ > 0 is a scaling factor
of some fixed positive semi-definite function. In this case it is intuitive that
the optimal channel will be characterized by the divergent norm ‖K‖F , resulting
in the diminishing noise effects and the optimality of the divergent settings of
Θ → ∞.
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Effects of near-singular Gram matrices on parameters of kernel functions may
in general be less trivial. From (C.41) it is clear that the worst kernel has a
flat spectrum (which is the case for K = cI), while the optimal kernel function
results in the Gram matrix K with the eigenspectrum concentrated at |y| principal
components. Intuitively, by allowing changes in eigenspectra of Gram matrices,
we effectively choose an M -dimensional subspace of the feature space which could
be well modeled by |y|-KPCA. For example, for trace-constrained matrices, we
expect to reach the maximum of the objective (C.41) by choosing the parameters
Θ in such a way that rank(K(Θ)) ≤ |y|. A degenerate solution which satisfies
the optimality condition is when K is approximately rank-1, i.e. tr {K} ≈ λ1(KΘ)
and Kij ≈ Kii for all i, j ∈ {1, . . . ,M}.

It may be noticed that the rank degeneracy is largely an artifact of the trivial
data decoder q(x|f). Indeed, for noiseless channels and rank-1 kernels, it is pos-
sible to achieve a perfect reconstruction of feature vectors f from their encoded
representations y. However, the objective (C.39) does not explicitly favour a good
reconstruction of the source vectors x from features f. As a result, all the source
vectors may potentially be mapped to a single vector in the feature space, which
would lead to a degenerate optimum of the bound. For many interesting kernels,
this solution would be characterized by degenerate values of Θ. For example, for
trace-constrained radial basis and mixture kernels, the objective (C.39) would be
a monotonic function of Θ, which leads to trivial settings of the kernel parameters
(Agakov and Barber (2004c)).

C.3.5.2 Learning Kernel Functions by Variational Information Maximiza-

tion

As we mentioned earlier, one simple way to handle a possible degeneracy of the
kernel parameters is by constraining the off-diagonal values of the Gram matrix
according to (C.28). It is easy to see that this constraint helps to avoid rank-
deficiency of the trivial projections to the feature space. Moreover, numerically it
ensures that H(f) = const, i.e. the entropy of the features may be safely ignored
during the optimization of the general objective (C.25). Of course, the choice
of the threshold ǫ may in practice require similar kinds of heuristics as a choice
of kernel parameters themselves. Nevertheless, the thresholds may be easier to
interpret geometrically, as they define minimal angles between distinct vectors in
the feature space.

Alternatively, more complex data decoders q(x|f,Θq) may be considered, though
by analogy with Section C.2, a proper care should be taken for q(x|f,Θq) to be
kernelized and Θq to be properly constrained. For both of these cases, a formal
analysis of the optimal solutions for the kernel parameters Θ depends on the
constraints and the specifics of KΘ, and is difficult in general.
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